Initial study on quantitative electroencephalographic analysis of bioelectrical activity of the brain of children with fetal alcohol spectrum disorders (FASD) without epilepsy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36596841
PubMed Central
PMC9810692
DOI
10.1038/s41598-022-26590-4
PII: 10.1038/s41598-022-26590-4
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- epilepsie * patologie MeSH
- lidé MeSH
- mozek patologie MeSH
- prospektivní studie MeSH
- spektrum vrozených alkoholových poruch * diagnóza patologie MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice * patologie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fetal alcohol spectrum disorders (FASD) are spectrum of neurodevelopmental conditions associated with prenatal alcohol exposure. The FASD manifests mostly with facial dysmorphism, prenatal and postnatal growth retardation, and selected birth defects (including central nervous system defects). Unrecognized and untreated FASD leads to severe disability in adulthood. The diagnosis of FASD is based on clinical criteria and neither biomarkers nor imaging tests can be used in order to confirm the diagnosis. The quantitative electroencephalography (QEEG) is a type of EEG analysis, which involves the use of mathematical algorithms, and which has brought new possibilities of EEG signal evaluation, among the other things-the analysis of a specific frequency band. The main objective of this study was to identify characteristic patterns in QEEG among individuals affected with FASD. This study was of a pilot prospective study character with experimental group consisting of patients with newly diagnosed FASD and of the control group consisting of children with gastroenterological issues. The EEG recordings of both groups were obtained, than analyzed using a commercial QEEG module. As a results we were able to establish the dominance of the alpha rhythm over the beta rhythm in FASD-participants compared to those from the control group, mostly in frontal and temporal regions. Second important finding is an increased theta/beta ratio among patients with FASD. These findings are consistent with the current knowledge on the pathological processes resulting from the prenatal alcohol exposure. The obtained results and conclusions were promising, however, further research is necessary (and planned) in order to validate the use of QEEG tools in FASD diagnostics.
Department of Neurosurgery Vital Medic 46 200 Kluczbork Poland
School of Computing and Mathematical Sciences University of Greenwich London SE10 9LS UK
Zobrazit více v PubMed
Streissguth AP, O’Malley K. Neuropsychiatric implications and long-term consequences of fetal alcohol spectrum disorders. Semin. Clin. Neuropsychiatry. 2000;5:177–190. doi: 10.1053/scnp.2000.6729. PubMed DOI
Hoyme HE, et al. Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics. 2016;138:e20154256. doi: 10.1542/peds.2015-4256. PubMed DOI PMC
Del Campo M, Jones KL. A review of the physical features of the fetal alcohol spectrum disorders. Eur. J. Med. Genet. 2017;60:55–64. doi: 10.1016/j.ejmg.2016.10.004. PubMed DOI
Jones K, Smith D, Ulleland C, Streissguth A. Pattern of malformation in offspring of chronic alcoholic mothers. The Lancet. 1973;301:1267–1271. doi: 10.1016/S0140-6736(73)91291-9. PubMed DOI
Castells S, Mark E, Abaci F, Schwartz E. Growth retardation in fetal alcohol syndrome. Dev. Pharmacol. Ther. 1981;3:232–241. doi: 10.1159/000457447. PubMed DOI
Kuehn D, et al. A prospective cohort study of the prevalence of growth, facial, and central nervous system abnormalities in children with heavy prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 2012;36:1811–1819. doi: 10.1111/j.1530-0277.2012.01794.x. PubMed DOI PMC
Carter RC, Jacobson JL, Sokol RJ, Avison MJ, Jacobson SW. Fetal alcohol-related growth restriction from birth through young adulthood and moderating effects of maternal prepregnancy weight. Alcohol. Clin. Exp. Res. 2013;37:452–462. doi: 10.1111/j.1530-0277.2012.01940.x. PubMed DOI PMC
O’Leary CM, Elliott EJ, Nassar N, Bower C. Exploring the potential to use data linkage for investigating the relationship between birth defects and prenatal alcohol exposure. Birth Defects Res. Part A Clin. Mol. Teratol. 2013;97:497–504. doi: 10.1002/bdra.23142. PubMed DOI
Werler MM, Lammer EJ, Rosenberg L, Mitchell AA. Maternal alcohol use in relation to selected birth defects. Am. J. Epidemiol. 1991;134:691–698. doi: 10.1093/oxfordjournals.aje.a116145. PubMed DOI
Pei L, Kang Y, Cheng Y, Yan H. The association of maternal lifestyle with birth defects in Shaanxi province, northwest China. PloS One. 2015;10:e0139452. doi: 10.1371/journal.pone.0139452. PubMed DOI PMC
Hofer R, Burd L. Review of published studies of kidney, liver, and gastrointestinal birth defects in fetal alcohol spectrum disorders. Birth Defects Res. Part A Clin. Mol. Teratol. 2009;85:179–183. doi: 10.1002/bdra.20562. PubMed DOI
Treit S, Jeffery D, Beaulieu C, Emery D. Radiological findings on structural magnetic resonance imaging in fetal alcohol spectrum disorders and healthy controls. Alcohol. Clin. Exp. Res. 2020;44:455–462. doi: 10.1111/acer.14263. PubMed DOI
Donald KA, et al. Neuroimaging effects of prenatal alcohol exposure on the developing human brain: A magnetic resonance imaging review. Acta Neuropsychiatr. 2015;27:251–269. doi: 10.1017/neu.2015.12. PubMed DOI
Kodituwakku P, Kodituwakku E. Cognitive and behavioral profiles of children with fetal alcohol spectrum disorders. Curr. Dev. Disord. Rep. 2014;1:149–160. doi: 10.1007/s40474-014-0022-6. DOI
Kodituwakku PW. A neurodevelopmental framework for the development of interventions for children with fetal alcohol spectrum disorders. Alcohol. 2010;44:717–728. doi: 10.1016/j.alcohol.2009.10.009. PubMed DOI PMC
Vaurio L, Riley EP, Mattson SN. Neuropsychological comparison of children with heavy prenatal alcohol exposure and an IQ-matched comparison group. J. Int. Neuropsychol. Soc. 2011;17:463–473. doi: 10.1017/S1355617711000063. PubMed DOI PMC
Mattson SN, Bernes GA, Doyle LR. Fetal alcohol spectrum disorders: A review of the neurobehavioral deficits associated with prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 2019;43:1046–1062. PubMed PMC
Astley SJ, et al. Validation of the fetal alcohol spectrum disorder (FASD) 4-digit diagnostic code. J. Popul. Ther. Clin. Pharmacol. 2013;20:e416–e467. PubMed
Cook JL, et al. Fetal alcohol spectrum disorder: A guideline for diagnosis across the lifespan. Cmaj. 2016;188:191–197. doi: 10.1503/cmaj.141593. PubMed DOI PMC
Nicita F, et al. Seizures in fetal alcohol spectrum disorders: Evaluation of clinical, electroencephalographic, and neuroradiologic features in a pediatric case series. Epilepsia. 2014;55:e60–e66. doi: 10.1111/epi.12638. PubMed DOI
Adler, R.S. Neuroimaging in Fetal Alcohol Spectrum Disorder. In Evaluating Fetal Alcohol Spectrum Disorders in the Forensic Context (ed. Novick Brown, N.) 10.1007/978-3-030-73628-6_7 (Springer, Cham. 2021)
Nedermijer S, Ouwens ID, Majoie M, et al. Epilepsie als eerste symptoom van een fetal alcohol syndrome disorder bij volwassenen. Epilepsie Period. Prof. 2022;21:6–9. doi: 10.54160/epilepsie.12870. DOI
Bell SH, et al. The remarkably high prevalence of epilepsy and seizure history in fetal alcohol spectrum disorders. Alcohol. Clin. Exp. Res. 2010;34:1084–1089. doi: 10.1111/j.1530-0277.2010.01184.x. PubMed DOI
Boronat S, et al. Seizures and electroencephalography findings in 61 patients with fetal alcohol spectrum disorders. Eur. J. Med. Genet. 2017;60:72–78. doi: 10.1016/j.ejmg.2016.09.012. PubMed DOI
Nuwer M. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: Report of the American academy of neurology and the American clinical neurophysiology society. Neurology. 1997;49:277–292. doi: 10.1212/WNL.49.1.277. PubMed DOI
Popa LL, Dragos H, Pantelemon C, Rosu OV, Strilciuc S. The role of quantitative EEG in the diagnosis of neuropsychiatric disorders. J. Med. Life. 2020;13:8. doi: 10.25122/jml-2019-0085. PubMed DOI PMC
McVoy M, et al. A systematic review of quantitative EEG as a possible biomarker in child psychiatric disorders. Psychiatry Res. 2019;279:331–344. doi: 10.1016/j.psychres.2019.07.004. PubMed DOI
O’Reilly C, Lewis JD, Elsabbagh M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PloS One. 2017;12:e0175870. doi: 10.1371/journal.pone.0175870. PubMed DOI PMC
Chiarenza GA. Quantitative EEG in childhood attention deficit hyperactivity disorder and learning disabilities. Clin. EEG Neurosci. 2021;52:144–155. doi: 10.1177/1550059420962343. PubMed DOI
Bridges RM, Decker SL. ADHD in university settings: Predictive validity of quantitative EEG coherence. J. Clin. Neurophysiol. 2021;38:323–330. doi: 10.1097/WNP.0000000000000695. PubMed DOI
Lee S, et al. Quantitative EEG predicts outcomes in children after cardiac arrest. Neurology. 2019;92:e2329–e2338. doi: 10.1212/WNL.0000000000007504. PubMed DOI PMC
Appavu BL, et al. Quantitative electroencephalography after pediatric anterior circulation stroke. J. Clin. Neurophysiol. 2020;39(7):610–615. doi: 10.1097/WNP.0000000000000813. PubMed DOI PMC
Kawala-Sterniuk A, et al. Summary of over fifty years with brain-computer interfaces: A review. Brain Sci. 2021;11:43. doi: 10.3390/brainsci11010043. PubMed DOI PMC
Kawala-Sterniuk A, et al. Comparison of smoothing filters in analysis of EEG data for the medical diagnostics purposes. Sensors. 2020;20:807. doi: 10.3390/s20030807. PubMed DOI PMC
Martinek R, et al. Advanced bioelectrical signal processing methods: Past, present and future approach-part II: Brain signals. Sensors. 2021;21:6343. doi: 10.3390/s21196343. PubMed DOI PMC
Łysiak, A. Measuring stress response via the EEG: A review. In International Scientific Conference on Brain-Computer Interfaces BCI Opole 119–128 (Springer, 2021).
Goldman RI, Stern JM, Engel J, Jr, Cohen MS. Simultaneous EEG and FMRI of the alpha rhythm. Neuroreport. 2002;13:2487. doi: 10.1097/00001756-200212200-00022. PubMed DOI PMC
Moosmann M, et al. Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage. 2003;20:145–158. doi: 10.1016/S1053-8119(03)00344-6. PubMed DOI
Sadato N, et al. Neural networks for generation and suppression of alpha rhythm: A pet study. Neuroreport. 1998;9:893–897. doi: 10.1097/00001756-199803300-00024. PubMed DOI
Feige B, et al. Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J. Neurophysiol. 2005;93:2864–2872. doi: 10.1152/jn.00721.2004. PubMed DOI
Gonçalves SI, et al. Correlating the alpha rhythm to bold using simultaneous EEG/FMRI: Inter-subject variability. Neuroimage. 2006;30:203–213. doi: 10.1016/j.neuroimage.2005.09.062. PubMed DOI
Knyazeva MG, et al. Alpha rhythm and hypofrontality in schizophrenia. Acta Psychiatr. Scand. 2008;118:188–199. doi: 10.1111/j.1600-0447.2008.01227.x. PubMed DOI
Ehrhart F, et al. Review and gap analysis: Molecular pathways leading to fetal alcohol spectrum disorders. Mol. Psychiatry. 2019;24:10–17. doi: 10.1038/s41380-018-0095-4. PubMed DOI PMC
Goodlett CR, Horn KH. Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res. Health. 2001;25:175. PubMed PMC
Hu IC, Singh SP, Snyder AK. Effects of ethanol on glucose transporter expression in cultured hippocampal neurons. Alcohol. Clin. Exp. Res. 1995;19:1398–1402. doi: 10.1111/j.1530-0277.1995.tb00998.x. PubMed DOI
Singh SP, Pullen GL, Srivenugopal KS, Yuan X-H, Snyder AK. Decreased glucose transporter 1 gene expression and glucose uptake in fetal brain exposed to ethanol. Life Sci. 1992;51:527–536. doi: 10.1016/0024-3205(92)90030-S. PubMed DOI
Treit S, et al. Relationships between head circumference, brain volume and cognition in children with prenatal alcohol exposure. PloS One. 2016;11:e0150370. doi: 10.1371/journal.pone.0150370. PubMed DOI PMC
Norman AL, Crocker N, Mattson SN, Riley EP. Neuroimaging and fetal alcohol spectrum disorders. Dev. Disabil. Res. Rev. 2009;15:209–217. doi: 10.1002/ddrr.72. PubMed DOI PMC
Spadoni AD, McGee CL, Fryer SL, Riley EP. Neuroimaging and fetal alcohol spectrum disorders. Neurosci. Biobehav. Rev. 2007;31:239–245. doi: 10.1016/j.neubiorev.2006.09.006. PubMed DOI PMC
Meiers G, Nooner K, De Bellis MD, Debnath R, Tang A. Alpha EEG asymmetry, childhood maltreatment, and problem behaviors: A pilot home-based study. Child Abuse Negl. 2020;101:104358. doi: 10.1016/j.chiabu.2020.104358. PubMed DOI PMC
Kambeitz C, Klug MG, Greenmyer J, Popova S, Burd L. Association of adverse childhood experiences and neurodevelopmental disorders in people with fetal alcohol spectrum disorders (FASD) and non-FASD controls. BMC Pediatrics. 2019;19:1–9. doi: 10.1186/s12887-019-1878-8. PubMed DOI PMC
Nooner KB, Meiers G, Treadwell T, Butler LB. Changes in electroencephalography alpha associated with childhood neglect and adolescent alcohol use. Child Maltreat. 2022 doi: 10.1177/10775595221098029. PubMed DOI PMC
Picken C, Clarke AR, Barry RJ, McCarthy R, Selikowitz M. The theta/beta ratio as an index of cognitive processing in adults with the combined type of attention deficit hyperactivity disorder. Clin. EEG Neurosci. 2020;51:167–173. doi: 10.1177/1550059419895142. PubMed DOI
Clarke AR, Barry RJ, Karamacoska D, Johnstone SJ. The EEG theta/beta ratio: A marker of arousal or cognitive processing capacity? Appl. Psychophysiol. Biofeedback. 2019;44:123–129. doi: 10.1007/s10484-018-09428-6. PubMed DOI
Snyder SM, Rugino TA, Hornig M, Stein MA. Integration of an EEG biomarker with a clinician’s ADHD evaluation. Brain Behav. 2015;5:e00330. doi: 10.1002/brb3.330. PubMed DOI PMC
Young S, et al. Guidelines for identification and treatment of individuals with attention deficit/hyperactivity disorder and associated fetal alcohol spectrum disorders based upon expert consensus. BMC Psychiatry. 2016;16:1–14. doi: 10.1186/s12888-016-1027-y. PubMed DOI PMC
Burd L. FASD and ADHD: Are they related and how? BMC Psychiatry. 2016;16:1–3. doi: 10.1186/s12888-016-1028-x. PubMed DOI PMC
Popova S, et al. Comorbidity of fetal alcohol spectrum disorder: A systematic review and meta-analysis. The Lancet. 2016;387:978–987. doi: 10.1016/S0140-6736(15)01345-8. PubMed DOI
Mattson SN, Crocker N, Nguyen TT. Fetal alcohol spectrum disorders: Neuropsychological and behavioral features. Neuropsychol. Rev. 2011;21:81–101. doi: 10.1007/s11065-011-9167-9. PubMed DOI PMC
Chasnoff IJ, Wells AM, King L. Misdiagnosis and missed diagnoses in foster and adopted children with prenatal alcohol exposure. Pediatrics. 2015;135:264–270. doi: 10.1542/peds.2014-2171. PubMed DOI
Reading R. Misdiagnosis and missed diagnoses in foster and adopted children with prenatal alcohol exposure. Child Care Health Dev. 2015;3:502–502. doi: 10.1111/cch.12247_4. DOI
Perone S, Palanisamy J, Carlson SM. Age-related change in brain rhythms from early to middle childhood: Links to executive function. Dev. Sci. 2018;21:e12691. doi: 10.1111/desc.12691. PubMed DOI
Putman P, van Peer J, Maimari I, van der Werff S. EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits. Biol. Psychol. 2010;83:73–78. doi: 10.1016/j.biopsycho.2009.10.008. PubMed DOI
Putman P, Verkuil B, Arias-Garcia E, Pantazi I, van Schie C. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cognit. Affect. Behav. Neurosci. 2014;14:782–791. doi: 10.3758/s13415-013-0238-7. PubMed DOI
Angelidis A, Hagenaars M, van Son D, van der Does W, Putman P. Do not look away! spontaneous frontal EEG theta/beta ratio as a marker for cognitive control over attention to mild and high threat. Biol. Psychol. 2018;135:8–17. doi: 10.1016/j.biopsycho.2018.03.002. PubMed DOI
Poole KL, Hassan R, Schmidt LA. Temperamental shyness, frontal EEG theta/beta ratio, and social anxiety in children. Child Dev. 2021;92:2006–2019. doi: 10.1111/cdev.13564. PubMed DOI
Mattson JT, Thorne JC, Kover ST. Parental interaction style, child engagement, and emerging executive function in fetal alcohol spectrum disorders (FASD) Child Neuropsychol. 2021;28(7):1–25. PubMed PMC
Kautz-Turnbull C, Petrenko CL. A meta-analytic review of adaptive functioning in fetal alcohol spectrum disorders, and the effect of IQ, executive functioning, and age. Alcohol. Clin. Exp. Res. 2021;45:2430–2447. doi: 10.1111/acer.14728. PubMed DOI
Louw JG, et al. Executive function after prenatal alcohol exposure in children in a south African population: Cross-sectional study. JMIR Form. Res. 2021;5:e20658. doi: 10.2196/20658. PubMed DOI PMC
Rangmar J, Sandberg AD, Aronson M, Fahlke C. Cognitive and executive functions, social cognition and sense of coherence in adults with fetal alcohol syndrome. Nord. J. Psychiatry. 2015;69:1754–1760. doi: 10.3109/08039488.2015.1009487. PubMed DOI
Crews FT, Nixon K. Alcohol, neural stem cells, and adult neurogenesis. Alcohol Res. Health. 2003;27:197. PubMed PMC
Alfonso-Loeches S, Guerri C. Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit. Rev. Clin. Lab. Sci. 2011;48:19–47. doi: 10.3109/10408363.2011.580567. PubMed DOI
Unterberger I, Bauer R, Walser G, Bauer G. Corpus callosum and epilepsies. Seizure. 2016;37:55–60. doi: 10.1016/j.seizure.2016.02.012. PubMed DOI
Dylag A, et al. Magnetic resonance imaging (MRI) findings among children with fetal alcohol syndrome (FAS), partial fetal alcohol syndrome (pFAS) and alcohol related neurodevelopmental disorders (ARND) Prz. Lek. 2016;73:605–609. PubMed
Kaminska A, Eisermann M, Plouin P. Child EEG (and maturation) Handb. Clin. Neurol. 2019;160:125–142. doi: 10.1016/B978-0-444-64032-1.00008-4. PubMed DOI
Schmidt H, Knösche TR. Action potential propagation and synchronisation in myelinated axons. PLoS Comput. Biol. 2019;15:e1007004. doi: 10.1371/journal.pcbi.1007004. PubMed DOI PMC