Glomerular hyperfiltration with hyperglycemia in the spontaneously diabetic Torii (SDT) fatty rat, an obese type 2 diabetic model
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33453716
PubMed Central
PMC8820518
DOI
10.33549/physiolres.934533
PII: 934533
Knihovny.cz E-zdroje
- MeSH
- benzhydrylové sloučeniny farmakologie MeSH
- diabetes mellitus 2. typu farmakoterapie patologie patofyziologie MeSH
- diabetické nefropatie farmakoterapie etiologie MeSH
- experimentální diabetes mellitus farmakoterapie genetika patofyziologie MeSH
- glifloziny farmakologie MeSH
- glukosidy farmakologie MeSH
- hodnoty glomerulární filtrace MeSH
- hyperglykemie farmakoterapie patologie MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- obezita komplikace genetika MeSH
- potkani Sprague-Dawley MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzhydrylové sloučeniny MeSH
- dapagliflozin MeSH Prohlížeč
- glifloziny MeSH
- glukosidy MeSH
Glomerular hyperfiltration is observed in an early stage of kidney diseases including diabetic nephropathy. A better understanding of pathophysiological changes in glomerular hyperfiltration is essential for development of new therapies to prevent kidney disease progression. In this study, we investigated glomerular changes including glomerular filtration rate (GFR) and glomerular size in the Spontaneously Diabetic Torii (SDT) fatty rat, an obese type 2 diabetic model, and we also evaluated pharmacological effects of the sodium glucose cotransporter 2 inhibitor dapagliflozin on the renal lesions. Dapagliflozin was administered to SDT fatty rats from 5 to 17 weeks of age. Blood and urinary biochemical parameters were periodically measured. GFR was determined by transdermal GFR monitor at 16 weeks of age and histopathological analysis was performed at 17 weeks of age. SDT fatty rat developed severe hyperglycemia and exhibited pathophysiological abnormalities in the kidney, such as an increased GFR, glomerular hypertrophy and tissue lesions. Dapagliflozin achieved good glycemic control during the experimental period, inhibited the increase in GFR, and improved histopathological abnormalities in tubules. These results suggest that the SDT fatty rat is a useful model for analyzing the pathogenesis of diabetic nephropathy during its early stage and dapagliflozin improves not only hyperglycemia but also glomerular hyperfiltration and tubule lesions in SDT fatty rat.
Zobrazit více v PubMed
BRENNER BM, LAWLER EV, MacKENZIE HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–1777. doi: 10.1038/ki.1996.265. PubMed DOI
CHIRIEAC DV, COLLINS HL, CIANCI J, SPARKS JD, SPARKS CE. Altered triglyceride-rich lipoprotein production in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab. 2004;287:E42–E49. doi: 10.1152/ajpendo.00297.2003. PubMed DOI
FOULI GE, GNUDI L. The future: Experimental therapies for renal disease in diabetes. Nephron. 2019;143:3–7. doi: 10.1159/000492825. PubMed DOI
FRIEDEMANN J, HEINRICH R, SHULHEVICH Y, RAEDLE M, WILLIAM-OLSSON L, PILL J, SCHOCK-KUSCH D. Improved kinetic model for the transcutaneous measurement of glomerular filtration rate in experimental animals. Kidney Int. 2016;90:1377–1385. doi: 10.1016/j.kint.2016.07.024. PubMed DOI
HAN E, SHIN E, KIM G, LEE JY, LEE YH, LEE BW, KANG ES, CHA BS. Combining SGLT2 inhibition with a thiazolidinedione additively attenuate the very early phase of diabetic nephropathy progression in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2018;9:412. doi: 10.3389/fendo.2018.00412. PubMed DOI PMC
HATANAKA T, OGAWA D, TACHIBANA H, EGUCHI J, INOUE T, YAMADA H, TAKEI K, MAKINO H, WADA J. Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose-induced oxidative stress in type 1 diabetic mice. Pharmacol Res Perspect. 2016;4:e00239. doi: 10.1002/prp2.239. PubMed DOI PMC
HELAL I, FICK-BROSNAHAN GM, REED-GITOMER B, SCHRIER RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012;8:293–300. doi: 10.1038/nrneph.2012.19. PubMed DOI
ISHII Y, MOTOHASHI Y, MURAMATSU M, KATSUDA Y, MIYAJIMA K, SASASE T, YAMADA T, MATSUI T, KUME S, OHTA T. Female spontaneously diabetic Torii fatty rats develop nonalcoholic steatohepatitis-like hepatic lesions. World J Gastroenterol. 2015;21:9067–9078. doi: 10.3748/wjg.v21.i30.9067. PubMed DOI PMC
KASISKE BL, O’DONNELL MP, LEE H, KIM Y, KEANE WF. Impact of dietary fatty acid supplementation on renal injury in obese Zucker rats. Kidney Int. 1991;39:1125–1134. doi: 10.1038/ki.1991.143. PubMed DOI
KATSUDA Y, OHTA T, MIYAJIMA K, KEMMOCHI Y, SASASE T, TONG B, SHINOHARA M, YAMADA T. Diabetic complications in obese type 2 diabetic rat models. Exp Anim. 2014;63:121–132. doi: 10.1538/expanim.63.121. PubMed DOI PMC
KATSUDA Y, SASASE T, TADAKI H, MERA Y, MOTOHASHI Y, KEMMOCHI Y, TOYODA K, KAKIMOTO K, KUME S, OHTA T. Contribution of hyperglycemia on diabetic complications in obese type 2 diabetic SDT fatty rats: effects of SGLT inhibitor phlorizin. Exp Anim. 2015;64:161–169. doi: 10.1538/expanim.14-0084. PubMed DOI PMC
KEMMOCHI Y, FUKUI K, MAKI M, KIMURA S, ISHII Y, SASASE T, MIYAJIMA K, OHTA T. Metabolic disorders and diabetic complications in Spontaneously Diabetic Torii Lepr (fa) rat: A new obese type 2 diabetic model. J Diabetes Res. 2013;2013:948257. doi: 10.1155/2013/948257. PubMed DOI PMC
KEMMOCHI Y, OHTA T, MOTOHASHI Y, KANESHIGE A, KATSUMI S, KAKIMOTO K, YASUI Y, ANAGAWA-NAKAMURA A, TOYODA K, TANIAI-RIYA E, TAKAHASHI A, SHODA T, YAMADA T. Pathophysiological analyses of skeletal muscle in obese type 2 diabetes SDT fatty rats. J Toxicol Pathol. 2018;31:113–123. doi: 10.1293/tox.2017-0064. PubMed DOI PMC
KUWABARA A, SATOH M, TOMITA N, SASAKI T, KASHIHARA N. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia. 2010;53:2056–2065. doi: 10.1007/s00125-010-1810-0. PubMed DOI PMC
MAEKAWA T, TADAKI H, SASASE T, MOTOHASHI Y, MIYAJIMA K, OHTA T, KUME S. Pathophysiological profiles of SDT fatty rats, a potential new diabetic peripheral neuropathy model. J Pharmacol Toxicol Methods. 2017;88:160–166. doi: 10.1016/j.vascn.2017.09.257. PubMed DOI
MALATIALI S, FRANCIS I, BARAC-NIETO M. Phlorizin prevents glomerular hyperfiltration but not hypertrophy in diabetic rats. Exp Diabetes Res. 2008;2008:305403. doi: 10.1155/2008/305403. PubMed DOI PMC
MASUYAMA T, KATSUDA Y, SHINOHARA M. A novel model of obesity-related diabetes: introgression of the Lepr(fa) allele of the Zucker fatty rat into nonobese Spontaneously Diabetic Torii (SDT) rats. Exp Anim. 2005;54:13–20. doi: 10.1538/expanim.54.13. PubMed DOI
MATSUI K, OHTA T, ODA T, SASASE T, UEDA N, MIYAJIMA K, MASUYAMA T, SHINOHARA M, MATSUSHITA M. Diabetes-associated complications in Spontaneously Diabetic Torii fatty rats. Exp Anim. 2008;57:111–121. doi: 10.1538/expanim.57.111. PubMed DOI
MOSENZON O, WIVIOTT SD, CAHN A, ROZENBERG A, YANUV I, GOODRICH EL, MURPHY SA, HEERSPINK HJL, ZELNIKER TA, DWYER JP, BHATT DL, LEITER LA, McGUIRE DK, WILDING JPH, KATO ET, GAUSE-NILSSON IAM, FREDRIKSSON M, JOHANSSON PA, LANGKILDE AM, SABATINE MS, RAZ I. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7:606–617. doi: 10.1016/S2213-8587(19)30180-9. PubMed DOI
MOTOHASHI Y, KEMMOCHI Y, MAEKAWA T, TADAKI H, SASASE T, TANAKA Y, KAKEHASHI A, YAMADA T, OHTA T. Diabetic macular edema-like ocular lesions in male Spontaneously Diabetic Torii fatty rats. Physiol Res. 2018;67:423–432. doi: 10.33549/physiolres.933709. PubMed DOI
MURAI Y, SASASE T, TADAKI H, HEITAKU S, IMAGAWA N, YAMADA T, OHTA T. Analysis of haemodynamics and angiogenic response to ischaemia in the obese type 2 diabetic model Spontaneously Diabetic Torii Lepr(fa) (SDT fatty) rats. Clin Exp Pharmacol Physiol. 2020;47:583–590. doi: 10.1111/1440-1681.13239. PubMed DOI
NATIONAL KIDNEY FOUNDATION. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am J Kidney Dis. 2012;60:850–886. doi: 10.1053/j.ajkd.2012.07.005. PubMed DOI
PALATINI P. Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension. Nephrol Dial Transplant. 2012;27:1708–1714. doi: 10.1093/ndt/gfs037. PubMed DOI
PREIBISCH S, SAALFELD S, TOMANCAK P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 2009;25:1463–1465. doi: 10.1093/bioinformatics/btp184. PubMed DOI PMC
RAJASEKERAN H, REICH HN, HLADUNEWICH MA, CATTRAN D, LOVSHIN JA, LYTVYN Y, BJORNSTAD P, LAI V, TSE J, CHAM L, MAJUMDER S, BOWSKILL BB, KABIR MG, ADVANI SL, GIBSON IW, SOOD MM, ADVANI A, CHERNEY DZI. Dapagliflozin in focal segmental glomerulosclerosis: a combined human-rodent pilot study. Am J Physiol Renal Physiol. 2018;314:F412–F422. doi: 10.1152/ajprenal.00445.2017. PubMed DOI PMC
RUGGENENTI P, PORRINI EL, GASPARI F, MOTTERLINI N, CANNATA A, CARRARA F, CELLA C, FERRARI S, STUCCHI N, PARVANOVA A, ILIEV I, DODESINI AR, TREVISAN R, BOSSI A, ZALETEL J, REMUZZI G, INVESTIGATORS GFRS. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012;35:2061–2068. doi: 10.2337/dc11-2189. PubMed DOI PMC
RUSSO GT, De COSMO S, VIAZZI F, PACILLI A, CERIELLO A, GENOVESE S, GUIDA P, GIORDA C, CUCINOTTA D, PONTREMOLI R, FIORETTO P GROUP AM-AS. Plasma triglycerides and HDL-C levels predict the development of diabetic kidney disease in subjects with type 2 diabetes: The AMD annals initiative. Diabetes Care. 2016;39:2278–2287. doi: 10.2337/dc16-1246. PubMed DOI
SCHRIJVERS BF, FLYVBJERG A, TILTON RG, LAMEIRE NH, De VRIESE AS. A neutralizing VEGF antibody prevents glomerular hypertrophy in a model of obese type 2 diabetes, the Zucker diabetic fatty rat. Nephrol Dial Transplant. 2006;21:324–329. doi: 10.1093/ndt/gfi217. PubMed DOI
SHINOHARA M, MASUYAMA T, SHODA T, TAKAHASHI T, KATSUDA Y, KOMEDA K, KUROKI M, KAKEHASHI A, KANAZAWA Y. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res. 2000;1:89–100. doi: 10.1155/EDR.2000.89. PubMed DOI PMC
TAKENAKA T, INOUE T, OKADA H, OHNO Y, MIYAZAKI T, CHASTON DJ, HILL CE, SUZUKI H. Altered gap junctional communication and renal haemodynamics in Zucker fatty rat model of type 2 diabetes. Diabetologia. 2011;54:2192–2201. doi: 10.1007/s00125-011-2175-8. PubMed DOI
TAKIYAMA Y, SERA T, NAKAMURA M, ISHIZEKI K, SAIJO Y, YANAGIMACHI T, MAEDA M, BESSHO R, TAKIYAMA T, KITSUNAI H, SAKAGAMI H, FUJISHIRO D, FUJITA Y, MAKINO Y, ABIKO A, HOSHINO M, UESUGI K, YAGI N, OTA T, HANEDA M. Impacts of diabetes and an SGLT2 inhibitor on the glomerular number and volume in db/db Mice, as estimated by synchrotron radiation micro-CT at SPring-8. EBioMedicine. 2018;36:329–346. doi: 10.1016/j.ebiom.2018.09.048. PubMed DOI PMC
TAMURA Y, MURAYAMA T, MINAMI M, MATSUBARA T, YOKODE M, ARAI H. Ezetimibe ameliorates early diabetic nephropathy in db/db mice. J Atheroscler Thromb. 2012;19:608–618. doi: 10.5551/jat.11312. PubMed DOI
TANG L, WU Y, TIAN M, SJOSTROM CD, JOHANSSON U, PENG XR, SMITH DM, HUANG Y. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am J Physiol Endocrinol Metab. 2017;313:E563–E576. doi: 10.1152/ajpendo.00086.2017. PubMed DOI
TONNEIJCK L, MUSKIET MH, SMITS MM, Van BOMMEL EJ, HEERSPINK HJ, Van RAALTE DH, JOLES JA. Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28:1023–1039. doi: 10.1681/ASN.2016060666. PubMed DOI PMC
TORINIWA Y, MURAMATSU M, ISHII Y, RIYA E, MIYAJIMA K, OHSHIDA S, KITATANI K, TAKEKOSHI S, MATSUI T, KUME S, YAMADA T, OHTA T. Pathophysiological characteristics of non-alcoholic steatohepatitis-like changes in cholesterol-loaded type 2 diabetic rats. Physiol Res. 2018;67:601–612. doi: 10.33549/physiolres.933784. PubMed DOI
TUTTLE KR, BAKRIS GL, BILOUS RW, CHIANG JL, De BOER IH, GOLDSTEIN-FUCHS J, HIRSCH IB, KALANTAR-ZADEH K, NARVA AS, NAVANEETHAN SD, NEUMILLER JJ, PATEL UD, RATNER RE, WHALEY-CONNELL AT, MOLITCH ME. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37:2864–2883. doi: 10.2337/dc14-1296. PubMed DOI PMC
WANNER C, INZUCCHI SE, LACHIN JM, FITCHETT D, Von EYNATTEN M, MATTHEUS M, JOHANSEN OE, WOERLE HJ, BROEDL UC, ZINMAN B INVESTIGATORS E-RO. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–334. doi: 10.1056/NEJMoa1515920. PubMed DOI
ZHANG Y, THAI K, KEPECS DM, GILBERT RE. Sodium-glucose linked cotransporter-2 inhibition does not attenuate disease progression in the rat remnant kidney model of chronic kidney disease. PLoS One. 2016;11:e0144640. doi: 10.1371/journal.pone.0144640. PubMed DOI PMC