• This record comes from PubMed

In Vitro Antibacterial Effect of the Methanolic Extract of the Korean Soybean Fermented Product Doenjang against Staphylococcus aureus

. 2021 Aug 05 ; 11 (8) : . [epub] 20210805

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
MZeRO-0718 Ministerstvo Zemědělství
Project No: 374 LM2018100 Research Infrastructure METROFOOD-CZ, from the Ministry of Education, Youth and Sports of the Czech Republic
No. CZ.02.1.01/0.0/0.0/16_019/0000845 Centre for the investigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of anthropogenic origin: comprehensive assessment of soil contamination risks for the quality of ag

Ultra-high performance liquid chromatography/mass spectrometry showed soyasaponin I and the isoflavones daidzein, genistein, and glycitein to be the main components of the methanolic extract of the Korean soybean fermented product doenjang, which is known to be a rich source of naturally occurring bioactive substances, at average contents of 515.40, 236.30, 131.23, and 29.00 ng/mg, respectively. The antimicrobial activity of the methanolic extract of doenjang against nine Staphylococcusaureus strains was determined in vitro by the broth microdilution method to investigate its potential to serve as an alternative antibacterial compound. The results suggest that the extract is an effective antistaphylococcal agent at concentrations of 2048-4096 µg/mL. Moreover, the tested extract also showed the ability to inhibit the growth of both methicillin-sensitive and methicillin-resistant animal and clinical S. aureus isolates. The growth kinetics of the chosen strains of S. aureus at the minimum inhibitory concentration of the methanolic extract of doenjang support the idea that the tested extract acts as an antibacterial compound. To the best of our knowledge, this is the first report on the antistaphylococcal action of the methanolic extract of doenjang thus, additional studies including in vivo testing are necessary to confirm this hypothesis.

See more in PubMed

Lakhundi S., Kunyan Z. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018;31:e00020-18. doi: 10.1128/CMR.00020-18. PubMed DOI PMC

Tong S.Y., Davis J.S., Eichenberger E., Holland T.L., Fowler V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015;28:603–661. doi: 10.1128/CMR.00134-14. PubMed DOI PMC

Anjum M.F., Marco-Jimenez F., Duncan D., Marín C., Smith R.P., Evans S. Livestock-associated methicillin-resistant Staphylococcus aureus from animals and animal products in the UK. Front. Microbiol. 2019;10:2136. doi: 10.3389/fmicb.2019.02136. PubMed DOI PMC

Huijsdens X.W., Van Dijke B.J., Spalburg E., van Santen-Verheuvel M.G., Heck M.E., Pluister G.N., Voss A., Wannet W.J.B., De Neeling A.J. Community-acquired MRSA and pig-farming. Ann. Clin. Microbiol. Antimicrob. 2006;5:26. doi: 10.1186/1476-0711-5-26. PubMed DOI PMC

Kadariya J., Smith T.C., Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. Biomed. Res. Int. 2014;2014:827965. doi: 10.1155/2014/827965. PubMed DOI PMC

Nemati M., Hermans K., Lipinska U., Denis O., Deplano A., Struelens M., Devriese L.A., Pasmans F., Haesebrouck F. Antimicrobial resistance of old and recent Staphylococcus aureus isolates from poultry: First detection of livestock-associated methicillin-resistant strain ST398. Antimicrob. Agents Chemother. 2008;52:3817–3819. doi: 10.1128/AAC.00613-08. PubMed DOI PMC

Fluit A.C. Livestock-associated Staphylococcus aureus. Clin. Microbiol. Infect. 2012;18:735–744. doi: 10.1111/j.1469-0691.2012.03846.x. PubMed DOI

Haag A.F., Fitzgerald J.R., Penadés J.R. Staphylococcus aureus in animals. Microbiol. Spectr. 2019;7:GPP3-0060-2019. doi: 10.1128/microbiolspec.GPP3-0060-2019. PubMed DOI PMC

ECDC . Staphylococcus aureus . In: European Centre for Disease Prevention and Control, editor. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2019. 1st ed. Volume 1. ECDC; Stockholm, Sweden: 2020. pp. 21–22.

Cassini A., Hogberg L.D., Plachouras D., Quattrocchi A., Hoxha A., Simonsen G.S., Colomb-Cotinat M., Kretzschmar M.E., Devleesschauwer B., Cecchini M., et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019;19:56–66. doi: 10.1016/S1473-3099(18)30605-4. PubMed DOI PMC

Harkins C.P., Pichon B., Doumith M., Parkhill J., Westh H., Tomasz A., de Lencastre H., Bentley S.D., Kearns A.M., Holden M.T.G. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017;18:130. doi: 10.1186/s13059-017-1252-9. PubMed DOI PMC

Malachowa N., DeLeo F.R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 2010;67:3057–3071. doi: 10.1007/s00018-010-0389-4. PubMed DOI PMC

Mwangi M.M., Wu S.W., Zhou Y., Sieradzki K., de Lencastre H., Richardson P., Bruce D., Rubin E., Myers E., Siggia E.D., et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc. Natl. Acad. Sci. USA. 2007;104:9451–9456. doi: 10.1073/pnas.0609839104. PubMed DOI PMC

Turner N.A., Sharma-Kuinkel B.K., Maskarinec S.A., Eichenberger E.M., Shah P.P., Carugati M., Holland T.L., Fowler V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019;17:203–218. doi: 10.1038/s41579-018-0147-4. PubMed DOI PMC

Clauss M., Tafin U.F., Bizzini A., Trampuz A., Ilchmann T. Biofilm formation by staphylococci on fresh, fresh-frozen and processed human and bovine bone grafts. Eur. Cell Mater. 2013;25:159–166. doi: 10.22203/eCM.v025a11. PubMed DOI

Millet S., Maertens L. The European ban on antibiotic growth promoters in animal feed: From challenges to opportunities. Vet. J. 2011;187:143–144. doi: 10.1016/j.tvjl.2010.05.001. PubMed DOI

Newman D.J., Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI

Saleem M., Nazir M., Ali M.S., Hussain H., Lee Y.S., Riaz N., Jabbar A. Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Prod. Rep. 2010;27:238–254. doi: 10.1039/B916096E. PubMed DOI

Dai J., Han R., Xu Y., Li N., Wang J., Dan W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg. Chem. 2020;101:103922. doi: 10.1016/j.bioorg.2020.103922. PubMed DOI

Gohel V., Singh A., Vimal M., Ashwini P., Chhatpar H.S. Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr. J. Biotechnol. 2006;5:54–72.

Toghyani M., Toghyani M., Gheisari A., Ghalamkari G., Eghbalsaied S. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks. Livest. Sci. 2011;138:167–173. doi: 10.1016/j.livsci.2010.12.018. DOI

Jarriyawattanachaikul W., Chaveerach P., Chokesajjawatee N. Antimicrobial activity of Thai-herbal plants against food-borne pathogens E. coli, S. aureus and C. jejuni. Agric. Agric. Sci. Procedia. 2016;11:20–24. doi: 10.1016/j.aaspro.2016.12.004. DOI

Ghasemi H.A., Kasani N., Taherpour K. Effects of black cumin seed (Nigella sativa L.), a probiotic, a prebiotic and a synbiotic on growth performance, immune response and blood characteristics of male broilers. Livest. Sci. 2014;164:128–134. doi: 10.1016/j.livsci.2014.03.014. DOI

Peng Q.Y., Li J.D., Li Z., Duan Z.Y., Wu Y.P. Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Anim. Feed Sci. Technol. 2016;214:148–153. doi: 10.1016/j.anifeedsci.2016.02.010. DOI

Emami N.K., Samie A., Rahmani H.R., Ruiz-Feria C.A. The effect of peppermint essential oil and fructooligosaccharides, as alternatives to virginiamycin, on growth performance, digestibility, gut morphology and immune response of male broilers. Anim. Feed Sci. Technol. 2012;175:57–64. doi: 10.1016/j.anifeedsci.2012.04.001. DOI

Marinho M., Lordelo M., Cunha L., Freire J. Microbial activity in the gut of piglets: I. Effect of prebiotic and probiotic supplementation. Livest. Sci. 2007;108:236–239. doi: 10.1016/j.livsci.2007.01.081. DOI

Bomba A., Jonecova Z., Koscova J., Nemcova R., Gancarikova S., Mudronova D., Scirankova L., Buleca V., Lazar G., Posivak J., et al. The improvement of probiotics efficacy by synergistically acting components of natural origin: A review. Biologia. 2006;61:729–734. doi: 10.2478/s11756-006-0149-y. DOI

Lemke S.L., Mayura K., Reeves W.R., Wang N., Fickey C., Phillips T.D. Investigation of organophilic montmorillonite clay inclusion in zearalenonecontaminated diets using the mouse uterine weight bioassay. J. Toxicol. Environ. Health. 2001;62:243–258. doi: 10.1080/009841001459405. PubMed DOI

Hansen C.F., Riis A.L., Bresson S., Højbjerg O., Jensen B.B. Feeding organic acids enhances the barrier function against pathogenic bacteria of the piglet stomach. Livest. Sci. 2007;108:206–209. doi: 10.1016/j.livsci.2007.01.059. DOI

Singh B.P., Yadav D., Vij S. Soybean Bioactive Molecules: Current Trend and Future Prospective. In: Mérillon J.-M., Ramawat K.G., editors. Bioactive Molecules in Food. 1st ed. Springer; Cham, Switzerland: 2017. pp. 1–29. DOI

Wang Q., Wang H., Xie M. Antibacterial mechanism of soybean isoflavone on Staphylococcus aureus. Arch. Microbiol. 2010;192:893–898. doi: 10.1007/s00203-010-0617-1. PubMed DOI

Jang H.H., Noh H., Kim H.W., Cho S.Y., Kim H.J., Lee S.H., Lee S.H., Gunter M.J., Ferrari P., Scalbert A., et al. Metabolic tracking of isoflavones in soybean products and biosamples from healthy adults after fermented soybean consumption. Food Chem. 2020;330:127317. doi: 10.1016/j.foodchem.2020.127317. PubMed DOI

Teekachunhatean S., Hanprasertpong N., Teekachunhatean T. Factors affecting isoflavone content in soybean seeds grown in Thailand. Int. J. Agron. 2013;2013:163573. doi: 10.1155/2013/163573. DOI

Surh J., Kim Y.K.L., Kwon H. Korean Fermented Foods: Kimchi and Doenjang. In: Farnworth E.R., editor. Handbook of Fermented Functional Foods. 2nd ed. CRC Press; Boca Raton, FL, USA: 2008. pp. 333–351.

Park K.Y., Jung K.O., Rhee S.H., Choi Y.H. Antimutagenic effects of doenjang (Korean fermented soypaste) and its active compounds. Mutat. Res. 2003;523:43–53. doi: 10.1016/S0027-5107(02)00320-2. PubMed DOI

Huang Q., Zhang H., Xue D. Enhancement of antioxidant activity of Radix Puerariae and red yeast rice by mixed fermentation with Monascus purpureus. Food Chem. 2017;226:89–94. doi: 10.1016/j.foodchem.2017.01.021. PubMed DOI

Křížová L., Dadáková K., Kašparovská J., Kašparovský T. Isoflavones. Molecules. 2019;24:1076. doi: 10.3390/molecules24061076. PubMed DOI PMC

Verdrengh M., Collins L.V., Bergin P., Tarkowski A. Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect. 2004;6:86–92. doi: 10.1016/j.micinf.2003.10.005. PubMed DOI

Hong H., Landauer M.R., Foriska M.A., Ledney G.D. Antibacterial activity of the soy isoflavone genistein. J. Basic Microbiol. 2006;46:329–335. doi: 10.1002/jobm.200510073. PubMed DOI

Hummelova J., Rondevaldova J., Balastikova A., Lapcik O., Kokoska L. The relationship between structure and in vitro antibacterial activity of selected isoflavones and their metabolites with special focus on antistaphylococcal effect of demethyltexasin. Lett. Appl. Microbiol. 2015;60:242–247. doi: 10.1111/lam.12361. PubMed DOI

Ulanowska K., Tkaczyk A., Konopa G., Wegrzyn G. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch. Microbiol. 2006;184:271–278. doi: 10.1007/s00203-005-0063-7. PubMed DOI

Gayibova S., Ivanišová E., Árvay J., Hŕstková M., Slávik M., Petrová J., Hleba L., Tóth T., Kačániová M., Aripov T. In vitro screening of antioxidant and antimicrobial activities of medicinal plants growing in Slovakia. J. Microbiol. Biotechnol. Food Sci. 2019;8:1281–1289. doi: 10.15414/jmbfs.2019.8.6.1281-1289. DOI

Hassan S.M., Byrd J.A., Cartwright A.L., Bailey C.A. Hemolytic and antimicrobial activities differ among saponin-rich extracts from guar, quillaja, yucca, and soybean. Appl. Biochem. Biotechnol. 2010;162:1008–1017. doi: 10.1007/s12010-009-8838-y. PubMed DOI

Cha Y.S., Yang J., Back H.I., Kim S.R., Kim M.G., Jung S.J., Song W.O., Chae S.W. Visceral fat and body weight are reduced in overweight adults by the supplementation of Doenjang, a fermented soybean paste. Nutr. Res. Pract. 2012;6:520–526. doi: 10.4162/nrp.2012.6.6.520. PubMed DOI PMC

Park N.Y., Rico C.W., Lee S.C., Kang M.Y. Comparative effects of doenjang prepared from soybean and brown rice on the body weight and lipid metabolism in high fat-fed mice. J. Clin. Biochem. Nutr. 2012;51:12–24. doi: 10.3164/jcbn.12-24. PubMed DOI PMC

Mun E.G., Park J.E., Cha Y.S. Effects of Doenjang, a traditional Korean soybean paste, with high-salt diet on blood pressure in Sprague–Dawley rats. Nutrients. 2019;11:2745. doi: 10.3390/nu11112745. PubMed DOI PMC

Lee S.H., Lee H., Kim J.C. Anti-inflammatory effect of water extracts obtained from doenjang in LPS-stimulated RAW 264.7 cells. Food Sci. Technol. 2019;39:947–954. doi: 10.1590/fst.15918. DOI

Nam Y.R., Won S.B., Chung Y.S., Kwak C.S., Kwon Y.H. Inhibitory effects of Doenjang, Korean traditional fermented soybean paste, on oxidative stress and inflammation in adipose tissue of mice fed a high-fat diet. Nutr. Res. Pract. 2015;9:235–241. doi: 10.4162/nrp.2015.9.3.235. PubMed DOI PMC

Kim M.J., Koh E., Surh J., Kim Y.K.L., Kwon H. Distribution of isoflavones and coumestrol in legumes and their products consumed in Korea. Food Sci. Biotechnol. 2003;12:278–284.

Wadhwani T., Desai K., Patel D., Lawani D., Bahaley P., Joshi P., Kothari V. Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials. Internet J. Microbiol. 2009;7:1–13.

Rondevaldova J., Hummelova J., Tauchen J., Kokoska L. In vitro antistaphylococcal synergistic effect of isoflavone metabolite demethyltexasin with amoxicillin and oxacillin. Microb. Drug Resist. 2018;24:24–29. doi: 10.1089/mdr.2017.0033. PubMed DOI

Rondevaldova J., Novy P., Urban J., Kokoska L. Determination of anti-staphylococcal activity of thymoquinone in combinations with antibiotics by checkerboard method using EVA capmat as a vapor barrier. Arab. J. Chem. 2017;10:566–572. doi: 10.1016/j.arabjc.2015.04.021. DOI

Frankova A., Vistejnova L., Merinas-Amoc T., Leheckova Z., Doskocil I., Wong Soon J., Kudera T., Laupua F., Alonso-Moraga A., Kokoska L. In vitro antibacterial activity of extracts from samoan medicinal plants and their effect on proliferation and migration of human fibroblasts. J. Ethnopharmacol. 2021;264:113220. doi: 10.1016/j.jep.2020.113220. PubMed DOI

Clinical and Laboratory Standards Institute . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard M07. 11th ed. CLSI; Wayne, PA, USA: 2018. p. 91.

Cos P., Vlietinck A.J., Berghe D.V., Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006;106:290–302. doi: 10.1016/j.jep.2006.04.003. PubMed DOI

Clinical and Laboratory Standards Institute . Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline M26-A. 1st ed. CLSI; Wayne, PA, USA: 1999. p. 32.

Landers T.F., Cohen B., Wittum T.E., Larson E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012;127:4–22. doi: 10.1177/003335491212700103. PubMed DOI PMC

Van Boeckel T.P., Brower C., Gilbert M., Grenfell B.T., Levin S.A., Robinson T.P., Teillant A., Laxminarayan R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA. 2015;112:5649–5654. doi: 10.1073/pnas.1503141112. PubMed DOI PMC

Goerge T., Lorenz M.B., van Alen S., Hübner N.O., Becker K., Köck R. MRSA colonization and infection among persons with occupational livestock exposure in Europe: Prevalence, preventive options and evidence. Vet. Microbiol. 2017;200:6–12. doi: 10.1016/j.vetmic.2015.10.027. PubMed DOI

Voss A., Loeffen F., Bakker J., Klaassen C., Wulf M. Methicillin-resistant Staphylococcus aureus in swine farming. Emerg. Infect. Dis. 2005;11:1965–1966. doi: 10.3201/eid1112.050428. PubMed DOI PMC

Mackenzie J.S., Jeggo M. The one health approach—Why is it so important? Trop. Med. Infect. Dis. 2019;4:88. doi: 10.3390/tropicalmed4020088. PubMed DOI PMC

Kirchhelle C. Pharming animals: A global history of antibiotics in food production (1935–2017) Palgrave Commun. 2018;4:1–13. doi: 10.1057/s41599-018-0152-2. DOI

European Commission Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Off. J. Eur. Union. 2003;46:29–43.

Rossiter S.E., Fletcher M.H., Wuest W.M. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 2017;117:12415–12474. doi: 10.1021/acs.chemrev.7b00283. PubMed DOI PMC

Kim Y.K., Jang Y.Y., Kim D.H., Ko H.H., Han E.S., Lee C.S. Differential regulation of protein tyrosine kinase on free radical production, granule enzyme release, and cytokine synthesis by activated murine peritoneal macrophages. Biochem. Pharmacol. 2001;61:87–96. doi: 10.1016/S0006-2952(00)00531-1. PubMed DOI

Bernard F.X., Sable S., Cameron B., Provost J., Desnottes J.F., Crouzet J., Blanche F. Glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob. Agents Chemother. 1997;41:992–998. doi: 10.1128/AAC.41.5.992. PubMed DOI PMC

Abreu A.C., Coqueiro A., Sultan A.R., Lemmens N., Kim H.K., Verpoorte R., van Wamel W.J.B., Simões M., Choi Y.H. Looking to nature for a new concept in antimicrobial treatments: Isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. Sci. Rep. 2017;7:3777. doi: 10.1038/s41598-017-03716-7. PubMed DOI PMC

Dhayakaran R.P.A., Neethirajan S., Xue J., Shi J. Characterization of antimicrobial efficacy of soy isoflavones against pathogenic biofilms. LWT Food Sci. Tech. 2015;63:859–865. doi: 10.1016/j.lwt.2015.04.053. DOI

Birt D.F., Hendrich S., Wang W. Dietary agents in cancer prevention: Flavonoids and isoflavonoids. Pharmacol. Ther. 2001;90:157–177. doi: 10.1016/S0163-7258(01)00137-1. PubMed DOI

Xu M.L., Liu J., Zhu C., Gao Y., Zhao S., Liu W., Zhang Y. Interactions between soy isoflavones and other bioactive compounds: A review of their potentially beneficial health effects. Phytochem. Rev. 2015;14:459–467. doi: 10.1007/s11101-015-9398-0. DOI

Peluso M.R., Winters T.A., Shanahan M.F., Banz W.J. A cooperative interaction between soy protein and its isoflavone-enriched fraction lowers hepatic lipids in male obese Zucker rats and reduces blood platelet sensitivity in male Sprague-Dawley rats. J. Nutr. 2000;130:2333–2342. doi: 10.1093/jn/130.9.2333. PubMed DOI

Cline J.M., Wood C.E. Estrogen/isoflavone interactions in cynomolgus macaques (Macaca fascicularis) Am. J. Primatol. 2009;71:722–731. doi: 10.1002/ajp.20680. PubMed DOI PMC

Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC

Tsuboy M.S., Marcarini J.C., de Souza A.O., de Paula N.A., Dorta D.J., Mantovani M.S., Ribeiro L.R. Genistein at maximal physiologic serum levels induces G0/G1 arrest in MCF-7 and HB4a cells, but not apoptosis. J. Med. Food. 2014;17:218–225. doi: 10.1089/jmf.2013.0067. PubMed DOI PMC

Han B.J., Li W., Jiang G.B., Lai S.H., Zhang C., Zeng C.C., Liu Y.J. Effects of daidzein in regards to cytotoxicity in vitro, apoptosis, reactive oxygen species level, cell cycle arrest and the expression of caspase and Bcl-2 family proteins. Oncol. Rep. 2015;34:1115–1120. doi: 10.3892/or.2015.4133. PubMed DOI PMC

Zang Y.Q., Feng Y.Y., Luo Y.H., Zhai Y.Q., Ju X.Y., Feng Y.C., Wang J.R., Yu C.Q., Jin C.H. Glycitein induces reactive oxygen species-dependent apoptosis and G0/G1 cell cycle arrest through the MAPK/STAT3/NF-κB pathway in human gastric cancer cells. Drug Dev. Res. 2019;805:573–584. doi: 10.1002/ddr.21534. PubMed DOI

Pérez-Díaz I.M., Altuntas E.G., Juneja V.K. Microbial fermentation in food preservation. In: Juneja V.K., Dwivedi H.P., Sofos J.N., editors. Microbial Control and Food Preservation. 1st ed. Springer; New York, NY, USA: 2017. pp. 281–298. DOI

Wocławek-Potocka I., Mannelli C., Boruszewska D., Kowalczyk-Zieba I., Waśniewski T., Skarżyński D.J. Diverse effects of phytoestrogens on the reproductive performance: Cow as a model. Int. J. Endocrinol. 2013:650984. doi: 10.1155/2013/650984. PubMed DOI PMC

Kaminska B., Ciereszko R., Kiezun M., Dusza L. In vitro effects of genistein and daidzein on the activity of adrenocortical steroidogenic enzymes in mature female pigs. J. Physiol. Pharmacol. 2013;64:103–108. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...