Regulation of the microsomal proteome by salicylic acid and deficiency of phosphatidylinositol-4-kinases β1 and β2 in Arabidopsis thaliana
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- Arabidopsis thaliana, label-free proteomics, microsomes, phosphatidylinositol-4-kinase, salicylic acid,
- MeSH
- 1-Phosphatidylinositol 4-Kinase genetics metabolism MeSH
- Arabidopsis * genetics metabolism MeSH
- Phosphatidylinositols MeSH
- Salicylic Acid MeSH
- Arabidopsis Proteins * genetics metabolism MeSH
- Proteome MeSH
- Gene Expression Regulation, Plant MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1-Phosphatidylinositol 4-Kinase MeSH
- Phosphatidylinositols MeSH
- Salicylic Acid MeSH
- Arabidopsis Proteins * MeSH
- Proteome MeSH
Phosphatidylinositol-4-kinases β1 and β2 (PI4Kβ1/PI4Kβ2), which are responsible for phosphorylation of phosphatidylinositol to phosphatidylinositol-4-phosphate, have important roles in plant vesicular trafficking. Moreover, PI4Kβ1/PI4Kβ2 negatively regulates biosynthesis of phytohormone salicylic acid (SA), a key player in plant immune responses. The study focused on the effect of PI4Kβ1/PI4Kβ2 deficiency and SA level on the proteome of microsomal fraction. For that purpose we used four Arabidopsis thaliana genotypes: wild type; double mutant with impaired function of PI4Kβ1/PI4Kβ2 (pi4kβ1/pi4kβ2) exhibiting high SA level; sid2 mutant with impaired SA biosynthesis depending on the isochorismate synthase 1 and triple mutant sid2/pi4kβ1/pi4kβ2. We identified 1797 proteins whose levels were changed between genotypes. We showed that increased SA concentration affected the levels of 473 proteins. This includes typical SA pathway markers but also points to connections between SA pathway and clathrin-independent endocytosis (flotillins) and exocytosis/protein secretion (syntaxins, tetraspanin) to be investigated in future. In contrast to SA, the absence of PI4Kβ1/PI4Kβ2 itself affected only 27 proteins. Among them we identified CERK1, a receptor for chitin. Although PI4Kβ1/PI4Kβ2 deficiency itself did not have a substantial impact on the proteome of the microsomal fraction, our data clearly show that it enhances proteome changes when SA pathway is modulated in parallel.
Faculty of Biology Ludwig Maximilians University of Munich Martinsried Germany
Institute of Experimental Botany of the Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Antignani, V., Klocko, A. L., Bak, G., Chandrasekaran, S. D., Dunivin, T., & Nielsen, E. (2015). Recruitment of PLANT U-BOX13 and the PI4Kbeta1/beta2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. Plant Cell, 27(1), 243-261. https://doi.org/10.1105/tpc.114.134262
Kang, B. H., Nielsen, E., Preuss, M. L., Mastronarde, D., & Staehelin, L. A. (2011). Electron tomography of RabA4b- and PI-4Kbeta1-labeled trans Golgi network compartments in Arabidopsis. Traffic (Copenhagen, Denmark), 12(3), 313-329. https://doi.org/10.1111/j.1600-0854.2010.01146.x
Preuss, M. L., Schmitz, A. J., Thole, J. M., Bonner, H. K., Otegui, M. S., & Nielsen, E. (2006). A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. Journal of Cell Biology, 172(7), 991-998. https://doi.org/10.1083/jcb.200508116
Kalachova, T., Janda, M., Sasek, V., Ortmannova, J., Novakova, P., Dobrev, I. P., & Ruelland, E. (2020). Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Ann Bot, 125(5), 775-784. https://doi.org/10.1093/aob/mcz112
Pluharova, K., Leontovycova, H., Stoudkova, V., Pospichalova, R., Marsik, P., Kloucek, P., & Kalachova, T. (2019). “Salicylic Acid Mutant Collection” as a Tool to Explore the Role of Salicylic Acid in Regulation of Plant Growth under a Changing Environment. International Journal of Molecular Sciences, 20(24). https://doi.org/10.3390/ijms20246365
Sasek, V., Janda, M., Delage, E., Puyaubert, J., Guivarc'h, A., Lopez Maseda, E., & Ruelland, E. (2014). Constitutive salicylic acid accumulation in pi4kIIIbeta1beta2 Arabidopsis plants stunts rosette but not root growth. New Phytologist, 203(3), 805-816. https://doi.org/10.1111/nph.12822
McLoughlin, F., Arisz, S. A., Dekker, H. L., Kramer, G., de Koster, C. G., Haring, M. A., & Testerink, C. (2013). Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochemical Journal, 450(3), 573-581. https://doi.org/10.1042/BJ20121639
Lee, S., Lee, E. J., Yang, E. J., Lee, J. E., Park, A. R., Song, W. H., & Park, O. K. (2004). Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell, 16(6), 1378-1391. https://doi.org/10.1105/tpc.021683
Blanco, F., Salinas, P., Cecchini, N. M., Jordana, X., Van Hummelen, P., Alvarez, M. E., & Holuigue, L. (2009). Early genomic responses to salicylic acid in Arabidopsis. Plant Molecular Biology, 70(1-2), 79-102. https://doi.org/10.1007/s11103-009-9458-1
van Leeuwen, H., Kliebenstein, D. J., West, M. A., Kim, K., van Poecke, R., Katagiri, F., & St Clair, D. A. (2007). Natural variation among Arabidopsis thaliana accessions for transcriptome response to exogenous salicylic acid. Plant Cell, 19(7), 2099-2110. https://doi.org/10.1105/tpc.107.050641
Kalachova, T., Leontovycova, H., Iakovenko, O., Pospichalova, R., Marsik, P., Kloucek, P., & Ruelland, E. (2019). Interplay between phosphoinositides and actin cytoskeleton in the regulation of immunity related responses in Arabidopsis thaliana seedlings. Environmental and Experimental Botany, 167. ARTN 103867 https://doi.org/10.1016/j.envexpbot.2019.103867
Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562-565. https://doi.org/10.1038/35107108
Erde, J., Loo, R. R. O., & Loo, J. A. (2014). Enhanced FASP (eFASP) to Increase Proteome Coverage and Sample Recovery for Quantitative Proteomic Experiments. Journal of Proteome Research, 13(4), 1885-1895. https://doi.org/10.1021/pr4010019
Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., & Vizcaino, J. A. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research, 47(D1), D442-D450. https://doi.org/10.1093/nar/gky1106
Song, W. Y., Martinoia, E., Lee, J., Kim, D., Kim, D. Y., Vogt, E., & Lee, Y. (2004). A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiology, 135(2), 1027-1039. https://doi.org/10.1104/pp.103.037739
Guo, B., Liu, C., Liang, Y., Li, N., & Fu, Q. (2019). Salicylic Acid Signals Plant Defence against Cadmium Toxicity. International Journal of Molecular Sciences, 20(12). https://doi.org/10.3390/ijms20122960
Liu, Z., Ding, Y., Wang, F., Ye, Y., & Zhu, C. (2016). Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Reports, 35(4), 719-731. https://doi.org/10.1007/s00299-015-1925-3
Sharma, A., Sidhu, G. P. S., Araniti, F., Bali, A. S., Shahzad, B., Tripathi, D. K., & Landi, M. (2020). The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules (Basel, Switzerland), 25(3). https://doi.org/10.3390/molecules25030540
Sappl, P. G., Onate-Sanchez, L., Singh, K. B., & Millar, A. H. (2004). Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Molecular Biology, 54(2), 205-219. https://doi.org/10.1023/B:PLAN.0000028786.57439.b3
Jones, A. M., Thomas, V., Truman, B., Lilley, K., Mansfield, J., & Grant, M. (2004). Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry, 65(12), 1805-1816. https://doi.org/10.1016/j.phytochem.2004.04.005
Mukherjee, A. K., Carp, M. J., Zuchman, R., Ziv, T., Horwitz, B. A., & Gepstein, S. (2010). Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. Journal of Proteomics, 73(4), 709-720. https://doi.org/10.1016/j.jprot.2009.10.005
Danek, M., Valentova, O., & Martinec, J. (2016). Flotillins, Erlins, and HIRs: From Animal Base Camp to Plant New Horizons. Critical Reviews in Plant Sciences, 35(4), 191-214. https://doi.org/10.1080/07352689.2016.1249690
Gehl, B., & Sweetlove, L. J. (2014). Mitochondrial Band-7 family proteins: scaffolds for respiratory chain assembly? Frontiers in Plant Science, 5, 141. https://doi.org/10.3389/fpls.2014.00141
Danek, M., Angelini, J., Malinska, K., Andrejch, J., Amlerova, Z., Kocourkova, D., & Petrasek, J. (2020). Cell wall contributes to the stability of plasma membrane nanodomain organization of Arabidopsis thaliana FLOTILLIN2 and HYPERSENSITIVE INDUCED REACTION1 proteins. Plant Journal, 101(3), 619-636. https://doi.org/10.1111/tpj.14566
Kroumanova, K., Kocourkova, D., Danek, M., Lamparova, L., Pospichalova, R., Malinska, K., & Janda, M. (2019). Characterisation of Arabidopsis flotillins in response to stresses. Biologia Plantarum, 63, 144-152.doi: 10.32615/bp.2019.017
Qi, Y., Tsuda, K., Nguyen le, V., Wang, X., Lin, J., Murphy, A. S., & Katagiri, F. (2011). Physical association of Arabidopsis hypersensitive induced reaction proteins (HIRs) with the immune receptor RPS2. Journal of Biological Chemistry, 286(36), 31297-31307. https://doi.org/10.1074/jbc.M110.211615
Lipka, V., Kwon, C., & Panstruga, R. (2007). SNARE-ware: the role of SNARE-domain proteins in plant biology. Annual Review of Cell and Developmental Biology, 23, 147-174. https://doi.org/10.1146/annurev.cellbio.23.090506.123529
Collins, N. C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J. L., & Schulze-Lefert, P. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425(6961), 973-977. https://doi.org/10.1038/nature02076
Rutter, B. D., & Innes, R. W. (2017). Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. Plant Physiology, 173(1), 728-741. https://doi.org/10.1104/pp.16.01253
Cai, Q., Qiao, L., Wang, M., He, B., Lin, F. M., Palmquist, J., & Jin, H. (2018). Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science, 360(6393), 1126-1129. https://doi.org/10.1126/science.aar4142
Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., & Shibuya, N. (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. PNAS, 104(49), 19613-19618. https://doi.org/10.1073/pnas.0705147104
Petutschnig, E. K., Stolze, M., Lipka, U., Kopischke, M., Horlacher, J., Valerius, O., & Lipka, V. (2014). A novel Arabidopsis chitin elicitor receptor kinase 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing. New Phytologist, 204(4), 955-967. https://doi.org/10.1111/nph.12920
Lin, F., Krishnamoorthy, P., Schubert, V., Hause, G., Heilmann, M., & Heilmann, I. (2019). A dual role for cell plate-associated PI4Kbeta in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. Embo Journal, 38(4):e100303. https://doi.org/10.15252/embj.2018100303