Acute lung injury - from pathophysiology to treatment
Language English Country Czech Republic Media print
Document type Journal Article, Review
PubMed
33464919
PubMed Central
PMC8603709
DOI
10.33549/physiolres.934602
PII: 934602
Knihovny.cz E-resources
- MeSH
- Acute Lung Injury physiopathology therapy MeSH
- Humans MeSH
- Respiratory Distress Syndrome physiopathology therapy MeSH
- Respiration, Artificial methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Acute lung injury is characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen, decreased lung compliance, and diffuse alveolar infiltrates on chest X-ray. The 1994 American-European Consensus Conference defined "acute respiratory distress syndrome, ARDS" by acute onset after a known trigger, severe hypoxemia defined by PaO2/FiO2=200 mm Hg, bilateral infiltrates on chest X-ray, and absence of cardiogenic edema. Milder form of the syndrome with PaO2/FiO2 between 200-300 mm Hg was named "acute lung injury, ALI". Berlin Classification in 2012 defined three categories of ARDS according to hypoxemia (mild, moderate, and severe), and the term "acute lung injury" was assigned for general description or for animal models. ALI/ARDS can originate from direct lung triggers such as pneumonia or aspiration, or from extrapulmonary reasons such as sepsis or trauma. Despite growing understanding the ARDS pathophysiology, efficacy of standard treatments, such as lung protective ventilation, prone positioning, and neuromuscular blockers, is often limited. However, there is an increasing evidence that direct and indirect forms of ARDS may differ not only in the manifestations of alterations, but also in the response to treatment. Thus, individualized treatment according to ARDS subtypes may enhance the efficacy of given treatment and improve the survival of patients.
See more in PubMed
ABRAHAM A, KRASNODEMBSKAYA A. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Transl Med. 2020;9:28–38. doi: 10.1002/sctm.19-0205. PubMed DOI PMC
ABRAMS ST, ZHANG N, MANSON J, LIU T, DART C, BALUWA F, WANG SS, BROHI K, KIPAR A, YU W, WANG G, TOH CH. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187:160–169. doi: 10.1164/rccm.201206-1037OC. PubMed DOI PMC
ARDS DEFINITION TASK FORCE. RANIERI VM, RUBENFELD GD, THOMPSON BT, FERGUSON ND, CALDWELL E, FAN E, CAMPOROTA L, SLUTSKY AS. Acute respiratory distress syndrome: The Berlin definition. JAMA. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669. PubMed DOI
ARONSON JK, FERNER RE. Drugs and the renin-angiotensin system in covid-19. BMJ. 2020;369:m1313. doi: 10.1136/bmj.m1313. PubMed DOI
ASHBAUGH DG, BIGELOW DB, PETTY TL, LEVINE BE. Acute respiratory distress in adults. Lancet. 1967;2:319–323. doi: 10.1016/S0140-6736(67)90168-7. PubMed DOI
BEIN T, WEBER-CARSTENS S, APFELBACHER C. Long-term outcome after the acute respiratory distress syndrome: different from general critical illness? Curr Opin Crit Care. 2018;24:35–40. doi: 10.1097/MCC.0000000000000476. PubMed DOI PMC
BELLANI G, LAFFEY JG, PHAM T, FAN E, BROCHARD L, ESTEBAN A, GATTINONI L, Van HAREN F, LARSSON A, McAULEY DF, RANIERI M, RUBENFELD G, THOMPSON BT, WRIGGE H, SLUTSKY AS, PESENTI A LUNG SAFE INVESTIGATORS; ESICM TRIALS GROUP. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. doi: 10.1001/jama.2016.0291. PubMed DOI
BENZ F, ROY S, TRAUTWEIN C, RODERBURG C, LUEDDE T. Circulating microRNAs as biomarkers for sepsis. Int J Mol Sci. 2016;17 doi: 10.3390/ijms17010078. pii: E78. PubMed DOI PMC
BERNARD GR, ARTIGAS A, BRIGHAM KL, CARLET J, FALKE K, HUDSON L, LAMY M, LEGALL JR, MORRIS A, SPRAGG R THE AMERICAN-EUROPEAN CONSENSUS CONFERENCE ON ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–824. doi: 10.1164/ajrccm.149.3.7509706. PubMed DOI
BHARGAVA M, WENDT CH. Biomarkers in acute lung injury. Transl Res. 2012;159:205–217. doi: 10.1016/j.trsl.2012.01.007. PubMed DOI PMC
BHATIA M, MOOCHHALA S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol. 2004;202:145–156. doi: 10.1002/path.1491. PubMed DOI
BOS LD, SCHOUTEN LR, Van VUGHT LA, WIEWEL MA, ONG DSY, CREMER O, ARTIGAS A, MARTIN-LOECHES I, HOOGENDIJK AJ, Van der POLL T, HORN J, JUFFERMANS N, CALFEE CS, SCHULTZ MJ, MARS CONSORTIUM. Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis. Thorax. 2017;72:876–883. doi: 10.1136/thoraxjnl-2016-209719. PubMed DOI PMC
BOS LDJ. Diagnosis of acute respiratory distress syndrome by exhaled breath analysis. Ann Transl Med. 2018;6:33. doi: 10.21037/atm.2018.01.17. PubMed DOI PMC
BOYLE AJ, DI GANGI S, HAMID UI, MOTTRAM LJ, McNAMEE L, WHITE G, CROSS LJ, McNAMEE JJ, O’KANE CM, McAULEY DF. Aspirin therapy in patients with acute respiratory distress syndrome (ARDS) is associated with reduced intensive care unit mortality: a prospective analysis. Crit Care. 2015;19:109. doi: 10.1186/s13054-015-0846-4. PubMed DOI PMC
BOYLE AJ, SWEENEY RM, McAULEY DF. Pharmacological treatments in ARDS; a state-of-the-art update. BMC Med. 2013;11:166. doi: 10.1186/1741-7015-11-166. PubMed DOI PMC
CALFEE CS, DELUCCHI K, PARSONS PE, THOMPSON BT, WARE LB, MATTHAY MA THE NHLBI ARDS NETWORK. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2:611–620. doi: 10.1016/S2213-2600(14)70097-9. PubMed DOI PMC
CALFEE CS, JANZ DR, BERNARD GR, MAY AK, KANGELARIS KN, MATTHAY MA, WARE LB. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest. 2015;147:1539–1548. doi: 10.1378/chest.14-2454. PubMed DOI PMC
CARDINAL-FERNÁNDEZ P, FERRUELO A, ESTEBAN A, LORENTE JA. Characteristics of microRNAs and their potential relevance for the diagnosis and therapy of the acute respiratory distress syndrome: from bench to bedside. Transl Res. 2016;169:102–111. doi: 10.1016/j.trsl.2015.11.004. PubMed DOI
CHIUMELLO D, ALGIERI I, GRASSO S, TERRAGNI P, PELOSI P. Recruitment maneuvers in acute respiratory distress syndrome and during general anesthesia. Minerva Anestesiol. 2016;82:210–220. PubMed
CORNET AD, HOFSTRA JJ, SWART EL, GIRBES AR, JUFFERMANS NP. Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS. Intensive Care Med. 2010;36:758–764. doi: 10.1007/s00134-010-1754-3. PubMed DOI PMC
DU F, JIANG P, HE S, SONG D, XU F. Antiplatelet therapy for critically ill patients: a pairwise and Bayesian network meta-analysis. Shock. 2018;49:616–624. doi: 10.1097/SHK.0000000000001057. PubMed DOI
DUSHIANTHAN A, GROCOTT MP, POSTLE AD, CUSACK R. Acute respiratory distress syndrome and acute lung injury. Postgrad Med J. 2011;87:612–622. doi: 10.1136/pgmj.2011.118398. PubMed DOI
ECKERLE M, AMBROGGIO L, PUSKARICH MA, WINSTON B, JONES AE, STANDIFORD TJ, STRINGER KA. Metabolomics as a driver in advancing precision medicine in sepsis. Pharmacotherapy. 2017;37:1023–1032. doi: 10.1002/phar.1974. PubMed DOI PMC
EVANS CR, KARNOVSKY A, KOVACH MA, STANDIFORD TJ, BURANT CF, STRINGER KA. Untargeted LC-MS metabolomics of bronchoalveolar lavage fluid differentiates acute respiratory distress syndrome from health. J Proteome Res. 2014;13:640–649. doi: 10.1021/pr4007624. PubMed DOI PMC
FAKIOGLU H, GELVEZ J, TORBATI D, GLOVER ML, OLARTE JL, CAMACHO MT, WOLFSDORF J. Aminophylline therapy during endotoxemia in anesthetized spontaneously breathing rats. Pharmacol Res. 2004;49:45–50. doi: 10.1016/j.phrs.2003.03.001. PubMed DOI
FAMOUS KR, DELUCCHI K, WARE LB, KANGELARIS KN, LIU KD, THOMPSON BT, CALFEE CS ARDS NETWORK. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195:331–338. doi: 10.1164/rccm.201603-0645OC. PubMed DOI PMC
FAN E, Del SORBO L, GOLIGHER EC, HODGSON CL, MUNSHI L, WALKEY AJ, ADHIKARI NKJ, AMATO MBP, BRANSON R, BROWER RG, FERGUSON ND, GAJIC O, GATTINONI L, HESS D, MANCEBO J, MEADE MO, McAULEY DF, PESENTI A, RANIERI VM, RUBENFELD GD, ET AL. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017;195:1253–1263. doi: 10.1164/rccm.201703-0548ST. PubMed DOI
FANG L, KARAKIULAKIS G, ROTH M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8:e21. doi: 10.1016/S2213-2600(20)30116-8. PubMed DOI PMC
FERGUSON ND, COOK DJ, GUYATT GH, MEHTA S, HAND L, AUSTIN P, ZHOU Q, MATTE A, WALTER SD, LAMONTAGNE F, GRANTON JT, ARABI YM, ARROLIGA AC, STEWART TE, SLUTSKY AS, MEADE MO OSCILLATE TRIAL INVESTIGATORS; CANADIAN CRITICAL CARE TRIALS GROUP. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805. doi: 10.1056/NEJMoa1215554. PubMed DOI
FERRUELO A, PEÑUELAS Ó, LORENTE JA. MicroRNAs as biomarkers of acute lung injury. Ann Transl Med. 2018;6:34. doi: 10.21037/atm.2018.01.10. PubMed DOI PMC
FESTIC E, CARR GE, CARTIN-CEBA R, HINDS RF, BANNER-GOODSPEED V, BANSAL V, ASUNI AT, TALMOR D, RAJAGOPALAN G, FRANK RD, GAJIC O, MATTHAY MA, LEVITT JE. Randomized clinical trial of a combination of an inhaled corticosteroid and Beta agonist in patients at risk of developing the acute respiratory distress syndrome. Crit Care Med. 2017;45:798–805. doi: 10.1097/CCM.0000000000002284. PubMed DOI PMC
FIORETTO JR, De CARVALHO WB. Temporal evolution of acute respiratory distress syndrome definitions. J Pediatr (Rio J) 2013;89:523–530. doi: 10.1016/j.jpedp.2013.02.009. PubMed DOI
FUJISHIMA S. Pathophysiology and biomarkers of acute respiratory distress syndrome. J Intensive Care. 2014;2:32. doi: 10.1186/2052-0492-2-32. PubMed DOI PMC
GATTINONI L, TACCONE P, CARLESSO E, MARINI JJ. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med. 2013;188:1286–1293. doi: 10.1164/rccm.201308-1532CI. PubMed DOI
GEBISTORF F, KARAM O, WETTERSLEV J, AFSHARI A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev. 2016;2016:CD002787. doi: 10.1002/14651858.CD002787.pub3. PubMed DOI PMC
GUÉRIN C, MANCEBO J. Prone positioning and neuromuscular blocking agents are part of standard care in severe ARDS patients: yes. Intensive Care Med. 2015;41:2195–2197. doi: 10.1007/s00134-015-3918-7. PubMed DOI
HABERTHÜR C, SEEBERGER MD. Acute respiratory distress syndrome and mechanical ventilation: ups and downs of an ongoing relationship trap. J Thorac Dis. 2016;8:E1608–E1609. doi: 10.1007/s00134-015-3918-7. PubMed DOI PMC
HERRIDGE MS, MOSS M, HOUGH CL, HOPKINS RO, RICE TW, BIENVENU OJ, AZOULAY E. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 2016;42:725–738. doi: 10.1007/s00134-016-4321-8. PubMed DOI
HRAIECH S, YOSHIDA T, PAPAZIAN L. Balancing neuromuscular blockade versus preserved muscle activity. Curr Opin Crit Care. 2015;21:26–33. doi: 10.1097/MCC.0000000000000175. PubMed DOI
HUA Y, OU X, LI Q, ZHU T. Neuromuscular blockers in the acute respiratory distress syndrome: A meta-analysis. PLoS One. 2020;15:e0227664. doi: 10.1371/journal.pone.0227664. PubMed DOI PMC
HUSSAIN M, XU C, AHMAD M, MAJEED A, LU M, WU X, TANG L, WU X. Acute respiratory distress syndrome: bench-to-bedside approaches to improve drug development. Clin Pharmacol Ther. 2018;104:484–494. doi: 10.1002/cpt.1034. PubMed DOI PMC
KLOOT TE, BLANCH L, MELYNNE YOUNGBLOOD A, WEINERT C, ADAMS AB, MARINI JJ, SHAPIRO RS, NAHUM A. Recruitment maneuvers in three experimental models of acute lung injury.. Effect on lung volume and gas exchange. Am J Respir Crit Care Med. 2000;161:1485–1494. doi: 10.1164/ajrccm.161.5.9809014. PubMed DOI
KOSUTOVA P, MIKOLKA P, BALENTOVA S, ADAMKOV M, KOLOMAZNIK M, CALKOVSKA A, MOKRA D. Intravenous dexamethasone attenuated inflammation and influenced apoptosis of lung cells in an experimental model of acute lung injury. Physiol Res. 2016;65(Suppl 5):S663–S672. doi: 10.33549/physiolres.933531. PubMed DOI
KOSUTOVA P, MIKOLKA P, BALENTOVA S, KOLOMAZNIK M, ADAMKOV M, MOKRY J, CALKOVSKA A, MOKRA D. Effects of phosphodiesterase 5 inhibitor sildenafil on the respiratory parameters, inflammation and apoptosis in a saline lavage-induced model of acute lung injury. J Physiol Pharmacol. 2018a;69:815–826. doi: 10.1183/13993003.congress-2018.PA5252. PubMed DOI
KOSUTOVA P, MIKOLKA P, KOLOMAZNIK M, BALENTOVA S, ADAMKOV M, CALKOVSKA A, MOKRA D. Reduction of lung inflammation, oxidative stress and apoptosis by the PDE4 inhibitor roflumilast in experimental model of acute lung injury. Physiol Res. 2018b;67(Suppl 4):S645–S654. doi: 10.33549/physiolres.934047. PubMed DOI
KUBA K, IMAI Y, RAO S, GAO H, GUO F, GUAN B, HUAN Y, YANG P, ZHANG Y, DENG W, BAO L, ZHANG B, LIU G, WANG Z, CHAPPELL M, LIU Y, ZHENG D, LEIBBRANDT A, WADA T, SLUTSKY AS, LIU D, QIN C, JIANG C, PENNINGER JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–879. doi: 10.1038/nm1267. PubMed DOI PMC
LEITE-JUNIOR JH, GARCIA CS, SOUZA-FERNANDES AB, SILVA PL, ORNELLAS DS, LARANGEIRA AP, CASTRO-FARIA-NETO HC, MORALES MM, NEGRI EM, CAPELOZZI VL, ZIN WA, PELOSI P, BOZZA PT, ROCCO PR. Methylprednisolone improves lung mechanics and reduces the inflammatory response in pulmonary but not in extrapulmonary mild acute lung injury in mice. Crit Care Med. 2008;36:2621–2628. doi: 10.1097/CCM.0b013e3181847b43. PubMed DOI
LI G, MALINCHOC M, CARTIN-CEBA R, VENKATA CV, KOR DJ, PETERS SG, HUBMAYR RD, GAJIC O. Eight-year trend of acute respiratory distress syndrome: a population-based study in Olmsted County, Minnesota. Am J Respir Crit Care Med. 2010;183:59–66. doi: 10.1164/rccm.201003-0436OC. PubMed DOI PMC
LICHTENSTEIN DA, MEZIÈRE GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134:117–125. doi: 10.1378/chest.07-2800. PubMed DOI PMC
LIU C, LI JG. Role of genetic factors in the development of acute respiratory distress syndrome. J Transl Intern Med. 2014;2:107. doi: 10.4103/2224-4018.141831. DOI
LV X, WEN T, SONG J, XIE D, WU L, JIANG X, JIANG P, WEN Z. Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome. Respir Res. 2017;18:165. doi: 10.1186/s12931-017-0651-5. PubMed DOI PMC
MARSHALL RP, BELLINGAN G, WEBB S, PUDDICOMBE A, GOLDSACK N, McANULTY RJ, LAURENT GJ. Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med. 2000;162:1783–1788. doi: 10.1164/ajrccm.162.5.2001061. PubMed DOI
MATTHAY MA, WARE LB, ZIMMERMAN GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122:2731–2740. doi: 10.1172/JCI60331. PubMed DOI PMC
MEDURI GU, SIEMIENIUK RAC, NESS RA, SEYLER SJ. Prolonged low-dose methylprednisolone treatment is highly effective in reducing duration of mechanical ventilation and mortality in patients with ARDS. J Intensive Care. 2018;6:53. doi: 10.1186/s40560-018-0321-9. PubMed DOI PMC
MEYER NJ, CALFEE CS. Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome. Lancet Respir Med. 2017;5:512–523. doi: 10.1016/S2213-2600(17)30187-X. PubMed DOI PMC
MIKOLKA P, KOPINCOVÁ J, KOŠÚTOVÁ P, ČIERNY D, ČALKOVSKÁ A, MOKRÁ D. Lung inflammatory and oxidative alterations after exogenous surfactant therapy fortified with budesonide in rabbit model of meconium aspiration syndrome. Physiol Res. 2016;65(Suppl 5):S653–S662. doi: 10.33549/physiolres.933529. PubMed DOI
MIKOLKA P, KOSUTOVA P, KOLOMAZNIK M, TOPERCEROVA J, KOPINCOVA J, CALKOVSKA A, MOKRA D. Effect of different dosages of dexamethasone therapy on lung function and inflammation in an early phase of acute respiratory distress syndrome model. Physiol Res. 2019;68(Suppl 3):S253–S263. doi: 10.33549/physiolres.934364. PubMed DOI
MIKOLKA P, MOKRÁ D, KOPINCOVÁ J, TOMČÍKOVÁ-MIKUŠIAKOVÁ L, CALKOVSKÁ A. Budesonide added to modified porcine surfactant Curosurf may additionally improve the lung functions in meconium aspiration syndrome. Physiol Res. 2013;62(Suppl 1):S191–S200. doi: 10.33549/physiolres.932606. PubMed DOI
MILNE S, YANG CX, TIMENS W, BOSSÉ Y, SIN DD. SARS-CoV-2 receptor ACE2 gene expression and RAAS inhibitors. Lancet Respir Med. 2020;8:e50–e51. doi: 10.1016/S2213-2600(20)30224-1. PubMed DOI PMC
MOKRA D, DRGOVA A, MOKRY J, PULLMANN R, REDFORS B, PETRASKOVA M, CALKOVSKA A. Comparison of the effects of low-dose vs. high-dose aminophylline on lung function in experimental meconium aspiration syndrome. J Physiol Pharmacol. 2008;59(Suppl 6):449–459. PubMed
MOKRA D, DRGOVA A, PULLMANN R, CALKOVSKA A. Selective phosphodiesterase 3 inhibitor olprinone attenuates meconium-induced oxidative lung injury. Pulm Pharmacol Ther. 2012;25:216–222. doi: 10.1016/j.pupt.2012.02.007. PubMed DOI
MOKRA D, KOSUTOVA P, BALENTOVA S, ADAMKOV M, MIKOLKA P, MOKRY J, ANTOSOVA M, CALKOVSKA A. Effects of budesonide on the lung functions, inflammation and apoptosis in a saline-lavage model of acute lung injury. J Physiol Pharmacol. 2016;67:919–932. PubMed
MOKRA D, KOSUTOVA P. Biomarkers in acute lung injury. Respir Physiol Neurobiol. 2015;209:52–58. doi: 10.1016/j.resp.2014.10.006. PubMed DOI
MOKRA D, MIKOLKA P, KOSUTOVA P, MOKRY J. Corticosteroids in acute lung injury: the dilemma continues. Int J Mol Sci. 2019;20 doi: 10.3390/ijms20194765. pii: E4765. PubMed DOI PMC
MOKRA D, MOKRY J, TONHAJZEROVA I. Anti-inflammatory treatment of meconium aspiration syndrome: benefits and risks. Respir Physiol Neurobiol. 2013;187:52–57. doi: 10.1016/j.resp.2013.02.025. PubMed DOI
MORTELLITI MP, MANNING HL. Acute respiratory distress syndrome. Am Fam Physician. 2002;65:1823–1830. PubMed
NETO AS, PEREIRA VG, ESPÓSITO DC, DAMASCENO MC, SCHULTZ MJ. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Ann Intensive Care. 2012;2:33. doi: 10.1186/2110-5820-2-33. PubMed DOI PMC
PEEK GJ, MUGFORD M, TIRUVOIPATI R, WILSON A, ALLEN E, THALANANY MM, HIBBERT CL, TRUESDALE A, CLEMENS F, COOPER N, FIRMIN RK, ELBOURNE D CESAR TRIAL COLLABORATION. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374:1351–1363. doi: 10.1016/S0140-6736(09)61069-2. PubMed DOI
PELOSI P, D’ONOFRIO D, CHIUMELLO D, PAOLO S, CHIARA G, CAPELOZZI VL, BARBAS CS, CHIARANDA M, GATTINONI L. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J. 2003;22(Suppl):48s–56s. doi: 10.1183/09031936.03.00420803. PubMed DOI
REILLY JP, BELLAMY S, SHASHATY MG, GALLOP R, MEYER NJ, LANKEN PN, KAPLAN S, HOLENA DN, MAY AK, WARE LB, CHRISTIE JD. Heterogeneous phenotypes of acute respiratory distress syndrome after major trauma. Ann Am Thorac Soc. 2014;11:728–736. doi: 10.1513/AnnalsATS.201308-280OC. PubMed DOI PMC
ROCCO PR, PELOSI P. Pulmonary and extrapulmonary acute respiratory distress syndrome: Myth or reality? Curr Opin Crit Care. 2008;14:50–55. doi: 10.1097/MCC.0b013e3282f2405b. PubMed DOI
RUBENFELD GD, CALDWELL E, PEABODY E, WEAVER J, MARTIN DP, NEFF M, STERN EJ, HUDSON LD. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685–1693. doi: 10.1056/NEJMoa050333. PubMed DOI
SAHARAN S, LODHA R, KABRA SK. Management of acute lung injury/ARDS. Indian J Pediatr. 2010;77:1296–1302. doi: 10.1007/s12098-010-0169-z. PubMed DOI
SALARI P, MOJTAHEDZADEH M, NAJAFI A, SADRAIE S, BAHAADINI K, MOHARRERI M, HADAVAND N, ABDOLLAHI M. Comparison of the effect of aminophylline and low PEEP vs. high PEEP on EGF concentration in critically ill patients with ALI/ARDS. J Clin Pharm Ther. 2005;30:139–144. doi: 10.1111/j.1365-2710.2004.00621.x. PubMed DOI
SEELEY EJ. Updates in the management of acute lung injury: a focus on the overlap between AKI and ARDS. Adv Chronic Kidney Dis. 2013;20:14–20. doi: 10.1053/j.ackd.2012.10.001. PubMed DOI
SEMLER MW, WHEELER AP, THOMPSON BT, BERNARD GR, WIEDEMANN HP, RICE TW NATIONAL INSTITUTES OF HEALTH NATIONAL HEART, LUNG, AND BLOOD INSTITUTE ACUTE RESPIRATORY DISTRESS SYNDROME NETWORK. Impact of initial central venous pressure on outcomes of conservative versus liberal fluid management in acute respiratory distress syndrome. Crit Care Med. 2016;44:782–789. doi: 10.1097/CCM.0000000000001555. PubMed DOI PMC
SHAVER CM, BASTARACHE JA. Clinical and biological heterogeneity in acute respiratory distress syndrome: direct versus indirect lung injury. Clin Chest Med. 2014;35:639–653. doi: 10.1016/j.ccm.2014.08.004. PubMed DOI PMC
SCHICK MA, WUNDER C, WOLLBORN J, ROEWER N, WASCHKE J, GERMER CT, SCHLEGEL N. Phosphodiesterase-4 inhibition as a therapeutic approach to treat capillary leakage in systemic inflammation. J Physiol. 2012;590:2693–2708. doi: 10.1113/jphysiol.2012.232116. PubMed DOI PMC
SILVA JD, De CASTRO LL, BRAGA CL, OLIVEIRA GP, TRIVELIN SA, BARBOSA-JUNIOR CM, MORALES MM, DOS SANTOS CC, WEISS DJ, LOPES-PACHECO M, CRUZ FF, ROCCO PRM. Mesenchymal stromal cells are more effective than their extracellular vesicles at reducing lung injury regardless of acute respiratory distress syndrome etiology. Stem Cells Int. 2019;2019:8262849. doi: 10.1155/2019/8262849. PubMed DOI PMC
SPADARO S, PARK M, TURRINI C, TUNSTALL T, THWAITES R, MAURI T, RAGAZZI R, RUGGERI P, HANSEL TT, CARAMORI G, VOLTA CA. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J Inflamm (Lond) 2019;16:1. doi: 10.1186/s12950-018-0202-y. PubMed DOI PMC
STANDIFORD TJ, WARD PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res. 2016;167:183–191. doi: 10.1016/j.trsl.2015.04.015. PubMed DOI PMC
STEINBERG KP, HUDSON LD, GOODMAN RB, HOUGH CL, LANKEN PN, HYZY R, THOMPSON BT, ANCUKIEWICZ M NATIONAL HEART, LUNG, AND BLOOD INSTITUTE ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) CLINICAL TRIALS NETWORK. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354:1671–1684. doi: 10.1056/NEJMoa051693. PubMed DOI
STRINGER KA, McKAY RT, KARNOVSKY A, QUÉMERAIS B, LACY P. Metabolomics and its application to acute lung diseases. Front Immunol. 2016;7:44. doi: 10.3389/fimmu.2016.00044. PubMed DOI PMC
SWEENEY RM, McAULEY DF. Acute respiratory distress syndrome. Lancet. 2016;388:2416–2430. doi: 10.1016/S0140-6736(16)00578-X. PubMed DOI PMC
THOMPSON BT, CHAMBERS RC, LIU KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377:562–572. doi: 10.1056/NEJMra1608077. PubMed DOI
TONGYOO S, PERMPIKUL C, MONGKOLPUN W, VATTANAVANIT V, UDOMPANTURAK S, KOCAK M, MEDURI GU. Hydrocortisone treatment in early sepsis-associated acute respiratory distress syndrome: results of a randomized controlled trial. Crit Care. 2016;20:329. doi: 10.1186/s13054-016-1511-2. PubMed DOI PMC
UMBRELLO M, FORMENTI P, BOLGIAGHI L, CHIUMELLO D. Current concepts of ARDS: A narrative review. Int J Mol Sci. 2016;18 doi: 10.3390/ijms18010064. pii: E64. PubMed DOI PMC
VISWAN A, GHOSH P, GUPTA D, AZIM A, SINHA N. Distinct metabolic endotype mirroring acute respiratory distress syndrome (ARDS) subphenotype and its heterogeneous biology. Sci Rep. 2019;9:2108. doi: 10.1038/s41598-019-39017-4. PubMed DOI PMC
VISWAN A, SINGH C, RAI RK, AZIM A, SINHA N, BARONIA AK. Metabolomics based predictive biomarker model of ARDS: A systemic measure of clinical hypoxemia. PLoS One. 2017;12:e0187545. doi: 10.1371/journal.pone.0187545. PubMed DOI PMC
WANG Y, ZHONG M, WANG Z, SONG J, WU W, ZHU D. The preventive effect of antiplatelet therapy in acute respiratory distress syndrome: a meta-analysis. Crit Care. 2018;22:60. doi: 10.1186/s13054-018-1988-y. PubMed DOI PMC
WARE LB, MATTHAY MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–1349. doi: 10.1056/NEJM200005043421806. PubMed DOI
WIEDEMANN HP, WHEELER AP, BERNARD GR, THOMPSON BT, HAYDEN D, DEBOISBLANC B, CONNORS AF, JR, HITE RD, HARABIN AL NATIONAL HEART, LUNG, AND BLOOD INSTITUTE ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) CLINICAL TRIALS NETWORK1. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–2575. doi: 10.1056/NEJMoa062200. PubMed DOI
WILSON JG, LIU KD, ZHUO H, CABALLERO L, McMILLAN M, FANG X, COSGROVE K, VOJNIK R, CALFEE CS, LEE JW, ROGERS AJ, LEVITT J, WIENER-KRONISH J, BAJWA EK, LEAVITT A, McKENNA D, THOMPSON BT, MATTHAY MA. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3:24–32. doi: 10.1016/S2213-2600(14)70291-7. PubMed DOI PMC
XU Z, HUANG Y, MAO P, ZHANG J, LI Y. Sepsis and ARDS: The dark side of histones. Mediators Inflamm. 2015;2015:205054. doi: 10.1155/2015/205054. PubMed DOI PMC
YOUNG D, LAMB SE, SHAH S, MacKENZIE I, TUNNICLIFFE W, LALL R, ROWAN K, CUTHBERTSON BH OSCAR STUDY GROUP. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368:806–813. doi: 10.1056/NEJMoa1215716. PubMed DOI
ZHENG Z, JIANG L, ZHANG S, GUERVILLY C, ZHANG M, FENG X, DING J. Neuromuscular blocking agents for acute respiratory distress syndrome: an updated meta-analysis of randomized controlled trials. Respir Res. 2020;21:23. doi: 10.1186/s12931-020-1287-4. PubMed DOI PMC
ZHU Z, LIANG L, ZHANG R, WEI Y, SU L, TEJERA P, GUO Y, WANG Z, LU Q, BACCARELLI AA, ZHU X, BAJWA EK, TAYLOR THOMPSON B, SHI GP, CHRISTIANI DC. Whole blood microRNA markers are associated with acute respiratory distress syndrome. Intensive Care Med Exp. 2017;5:38. doi: 10.1186/s40635-017-0155-0. PubMed DOI PMC
Aspiration syndromes and associated lung injury: incidence, pathophysiology and management
Alveolar type II cells and pulmonary surfactant in COVID-19 era