Structure of Plasma (re)Polymerized Polylactic Acid Films Fabricated by Plasma-Assisted Vapour Thermal Deposition
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GA17-10813S
Grantová Agentura České Republiky
SVV 260 579-2020
Univerzita Karlova v Praze
PubMed
33477840
PubMed Central
PMC7832887
DOI
10.3390/ma14020459
PII: ma14020459
Knihovny.cz E-resources
- Keywords
- NMR analysis, XPS analysis, plasma polymerisation, plasma-assisted vapour thermal deposition, thin films,
- Publication type
- Journal Article MeSH
Plasma polymer films typically consist of very short fragments of the precursor molecules. That rather limits the applicability of most plasma polymerisation/plasma-enhanced chemical vapour deposition (PECVD) processes in cases where retention of longer molecular structures is desirable. Plasma-assisted vapour thermal deposition (PAVTD) circumvents this limitation by using a classical bulk polymer as a high molecular weight "precursor". As a model polymer in this study, polylactic acid (PLA) has been used. The resulting PLA-like films were characterised mostly by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The molecular structure of the films was found to be tunable in a broad range: from the structures very similar to bulk PLA polymer to structures that are more typical for films prepared using PECVD. In all cases, PLA-like groups are at least partially preserved. A simplified model of the PAVTD process chemistry was proposed and found to describe well the observed composition of the films. The structure of the PLA-like films demonstrates the ability of plasma-assisted vapour thermal deposition to bridge the typical gap between the classical and plasma polymers.
Faculty of Mathematics and Physics Charles University 5 Holešovickách 2 180 00 Prague Czech Republic
Faculty of Technology Tomas Bata University in Zlín Vavrečkova 275 76001 Zlín Czech Republic
See more in PubMed
Shen M., Bell A.T. Plasma Polymerization. Volume 108. American Chemical Society; Washington, DC, USA: 1979. A Review of Recent Advances in Plasma Polymerization; pp. 1–33.
Friedrich J. Mechanisms of plasma polymerization—Reviewed from a chemical point of view. Plasma Process. Polym. 2011;8:783–802. doi: 10.1002/ppap.201100038. DOI
Goodman J. The formation of thin polymer films in the gas discharge. J. Polym. Sci. 1960;44:551–552. doi: 10.1002/pol.1960.1204414428. DOI
Bewilogua K., Bräuer G., Dietz A., Gäbler J., Goch G., Karpuschewski B., Szyszka B. Surface technology for automotive engineering. CIRP Ann. Manuf. Technol. 2009;58:608–627. doi: 10.1016/j.cirp.2009.09.001. DOI
Wang T.F., Lin T.J., Yang D.J., Antonelli J.A., Yasuda H.K. Corrosion protection of cold-rolled steel by low temperature plasma interface engineering I. Enhancement of E-coat adhesion. Prog. Org. Coat. 1996;28:291–297. doi: 10.1016/S0300-9440(96)00614-5. DOI
Grundmeier G., Thiemann P., Carpentier J., Barranco V. Tailored thin plasma polymers for the corrosion protection of metals. Surf. Coat. Technol. 2003;174:996–1001. doi: 10.1016/S0257-8972(03)00606-6. DOI
Ogino A., Nagatsu M. Gas barrier properties of hydrogenated amorphous carbon films coated on polymers by surface-wave plasma chemical vapor deposition. Thin Solid Films. 2007;515:3597–3601. doi: 10.1016/j.tsf.2006.11.152. DOI
Polonskyi O., Kylián O., Petr M., Choukourov A., Hanuš J., Biederman H. Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture. Thin Solid Films. 2013;540:65–68. doi: 10.1016/j.tsf.2013.05.163. DOI
Milella A., Di Mundo R., Palumbo F., Favia P., Fracassi F., d’Agostino R. Plasma nanostructuring of polymers: Different routes to superhydrophobicity. Plasma Process. Polym. 2009;6:460–466. doi: 10.1002/ppap.200930011. DOI
Zille A., Oliveira F.R., Souto P.A.P. Plasma treatment in textile industry. Plasma Process. Polym. 2015;12:98–131. doi: 10.1002/ppap.201400052. DOI
Cvelbar U., Walsh J.L., Černák M., de Vries H.W., Reuter S., Belmonte T., Corbella C., Miron C., Hojnik N., Jurov A., et al. White paper on the future of plasma science and technology in plastics and textiles. Plasma Process. Polym. 2019;16:1700228. doi: 10.1002/ppap.201700228. DOI
Tudoran C., Roşu M.C., Coroş M. A concise overview on plasma treatment for application on textile and leather materials. Plasma Process. Polym. 2020;17:2000046. doi: 10.1002/ppap.202000046. DOI
Siow K.S., Britcher L., Kumar S., Griesser H.J. Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—A review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI
Bhatt S., Pulpytel J., Mirshahi M., Arefi-Khonsari F. Plasma co-polymerized nano coatings—As a biodegradable solid carrier for tunable drug delivery applications. Polymer. 2013;54:4820–4829. doi: 10.1016/j.polymer.2013.06.054. DOI
Kratochvíl J., Kahoun D., Štěrba J., Langhansová H., Lieskovská J., Fojtíková P., Hanuš J., Kousal J., Kylián O., Straňák V. Plasma polymerized C:H:N:O thin films for controlled release of antibiotic substances. Plasma Process. Polym. 2018;15:1700160. doi: 10.1002/ppap.201700160. DOI
Bekeschus S., Favia P., Robert E., von Woedtke T. White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Process. Polym. 2019;16:1800033. doi: 10.1002/ppap.201800033. DOI
Hegemann D., Nisol B., Watson S., Wertheimer M.R. Energy Conversion Efficiency in Plasma Polymerization—A Comparison of Low- and Atmospheric-Pressure Processes. Plasma Process. Polym. 2016;13:834–842. doi: 10.1002/ppap.201500224. DOI
Choukourov A., Hanuš J., Kousal J., Grinevich A., Pihosh Y., Slavínská D., Biederman H. Thin polymer films from polyimide vacuum thermal degradation with and without a glow discharge. Vacuum. 2006;80:923–929. doi: 10.1016/j.vacuum.2005.12.012. DOI
Choukourov A., Gordeev I., Polonskyi O., Artemenko A., Hanyková L., Krakovský I., Kylián O., Slavínská D., Biederman H. Polyethylene (ethylene oxide)-like plasma polymers produced by plasma-assisted vacuum evaporation. Plasma Process. Polym. 2010;7:445–458. doi: 10.1002/ppap.200900153. DOI
Choukourov A., Grinevich A., Polonskyi O., Hanus J., Kousal J., Slavinska D., Biederman H. Vacuum thermal degradation of poly(ethylene oxide) J. Phys. Chem. B. 2009;113:2984–2989. doi: 10.1021/jp8107107. PubMed DOI
Choukourov A., Gordeev I., Arzhakov D., Artemenko A., Kousal J., Kylián O., Slavínská D., Biederman H. Does cross-link density of PEO-like plasma polymers influence their resistance to adsorption of fibrinogen? Plasma Process. Polym. 2012;9:48–58. doi: 10.1002/ppap.201100122. DOI
Choukourov A., Hanuš J., Kousal J., Grinevich A., Pihosh Y., Slavínská D., Biederman H. Plasma polymer films from sputtered polyimide. Vacuum. 2006;81:517–526. doi: 10.1016/j.vacuum.2006.07.010. DOI
Kousal J., Sedlaříková J., Kolářová Rašková Z., Krtouš Z., Kučerová L., Hurajová A., Vaidulych M., Hanuš J., Lehocký M. Degradable poly(ethylene oxide)-like plasma polymer films used for the controlled release of nisin. Polymers. 2020;12:1263. doi: 10.3390/polym12061263. PubMed DOI PMC
Kousal J., Kolářová Rašková Z., Sedlaříková J., Stloukal P., Solař P., Krtouš Z., Choukourov A., Sedlařík V., Lehocký M. Plasma polymers with controlled degradation behaviour; Proceedings of the NANOCON 2017—Conference Proceedings, 9th International Conference on Nanomaterials—Research and Application; Brno, Czech Republic. 18–20 October 2017; Ostrava, Czech Republic: TANGER Ltd.; 2018. pp. 461–466.
Kousal J., Krtouš Z., Kolářová Rašková Z., Sedlaříková J., Schäfer J., Kučerová L., Shelemin A., Solař P., Hurajová A., Biederman H., et al. Degradable plasma polymer films with tailored hydrolysis behavior. Vacuum. 2020;173:109062. doi: 10.1016/j.vacuum.2019.109062. DOI
Vink E.T.H., Rábago K.R., Glassner D.A., Springs B., O’Connor R.P., Kolstad J., Gruber P.R. The sustainability of nature worksTM polylactide polymers and ingeoTM polylactide fibers: An update of the future. Initiated by the 1st International Conference on Bio-based Polymers (ICBP 2003), 12–14 November 2003, Saitama, Japan. Macromol. Biosci. 2004;4:551–564. doi: 10.1002/mabi.200400023. PubMed DOI
Morent R., De Geyter N., Desmet T., Dubruel P., Leys C. Plasma surface modification of biodegradable polymers: A review. Plasma Process. Polym. 2011;8:171–190. doi: 10.1002/ppap.201000153. DOI
Pawar R.P., Tekale S.U., Shisodia S.U., Totre J.T., Domb A.J. Biomedical applications of poly(lactic acid) Rec. Pat. Regen. Med. 2014;4:40–51. doi: 10.2174/2210296504666140402235024. DOI
DeStefano V., Khan S., Tabada A. Applications of PLA in modern medicine. Eng. Regen. 2020;1:76–87. doi: 10.1016/j.engreg.2020.08.002. PubMed DOI PMC
Casalini T., Rossi F., Castrovinci A., Perale G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 2019;7 doi: 10.3389/fbioe.2019.00259. PubMed DOI PMC
Ligot S., Renaux F., Denis L., Cossement D., Nuns N., Dubois P., Snyders R. Experimental study of the plasma polymerization of ethyl lactate. Plasma Process. Polym. 2013;10:999–1009. doi: 10.1002/ppap.201300025. DOI
Ligot S., Bousser E., Cossement D., Klemberg-Sapieha J., Viville P., Dubois P., Snyders R. Correlation between mechanical properties and cross-linking degree of ethyl lactate plasma polymer films. Plasma Process. Polym. 2015;12:508–518. doi: 10.1002/ppap.201400162. DOI
Laurent M., Desjardins E., Meichelboeck M., Naudé N., Stafford L., Gherardi N., Laroche G. Characterization of argon dielectric barrier discharges applied to ethyl lactate plasma polymerization. J. Phys. D Appl. Phys. 2017;50:475205. doi: 10.1088/1361-6463/aa916d. DOI
Nisol B., Watson S., Lerouge S., Wertheimer M.R. Energetics of reactions in a dielectric barrier discharge with argon carrier gas: IV ethyl lactate. Plasma Process. Polym. 2016;13:965–969. doi: 10.1002/ppap.201600099. DOI
Kucharczyk P., Hnatkova E., Dvorak Z., Sedlarik V. Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour. Polym. Degrad. Stab. 2013;98:150–157. doi: 10.1016/j.polymdegradstab.2012.10.016. DOI
Palmer A.G., Cavanagh J., Wright P.E., Rance M. Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J. Magn. Reson. 1991;93:151–170. doi: 10.1016/0022-2364(91)90036-S. DOI
Beamson G., Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA 300 Database. John Wiley & Sons; Chichester, UK: 1992.
Kiss É., Bertóti I., Vargha-Butler E.I. XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films. J. Colloid Interface Sci. 2002;245:91–98. doi: 10.1006/jcis.2001.7954. PubMed DOI
Kousal J., Hanuš J., Choukourov A., Polonskyi O., Biederman H., Slavínská D. In situ diagnostics of RF magnetron sputtering of nylon. Plasma Process. Polym. 2009;6:803–812. doi: 10.1002/ppap.200932001. DOI
Zou H., Yi C., Wang L., Liu H., Xu W. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J. Therm. Anal. Calorim. 2009;97:929–935. doi: 10.1007/s10973-009-0121-5. DOI