Degradable Poly(ethylene oxide)-Like Plasma Polymer Films Used for the Controlled Release of Nisin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA17-10813S
Grantová Agentura České Republiky
PubMed
32492821
PubMed Central
PMC7362230
DOI
10.3390/polym12061263
PII: polym12061263
Knihovny.cz E-zdroje
- Klíčová slova
- controlled permeation, nisin, plasma polymerization, poly (ethylene oxide),
- Publikační typ
- časopisecké články MeSH
Poly(ethylene oxide) (PEO)-like thin films were successfully prepared by plasma-assisted vapor thermal deposition (PAVTD). PEO powders with a molar weight (Mw) between 1500 g/mol and 600,000 g/mol were used as bulk precursors. The effect of Mw on the structural and surface properties was analyzed for PEO films prepared at a lower plasma power. Fourier transform (FTIR-ATR) spectroscopy showed that the molecular structure was well preserved regardless of the Mw of the precursors. The stronger impact of the process conditions (the presence/absence of plasma) was proved. Molecular weight polydispersity, as well as wettability, increased in the samples prepared at 5 W. The influence of deposition plasma power (0-30 W) on solubility and permeation properties was evaluated for a bulk precursor of Mw 1500 g/mol. The rate of thickness loss after immersion in water was found to be tunable in this way, with the films prepared at the highest plasma power showing higher stability. The effect of plasma power deposition conditions was also shown during the permeability study. Prepared PEO films were used as a cover, and permeation layers for biologically active nisin molecule and a controlled release of this bacteriocin into water was achieved.
Centre of Polymer Systems Tomas Bata University Třída Tomáše Bati 5678 76001 Zlín Czech Republic
Faculty of Mathematics and Physics Charles University 5 Holešovičkách 2 180 00 Prague Czech Republic
Faculty of Technology Tomas Bata University in Zlín Vavrečkova 275 76001 Zlín Czech Republic
Zobrazit více v PubMed
Ren W., Cheng W., Wang G., Liu Y. Developments in antimicrobial polymers. J. Polym. Sci. Pol. Chem. 2017;55:632–639. doi: 10.1002/pola.28446. DOI
Holcapkova P., Hurajova A., Bazant P., Pummerova M., Sedlarik V. Thermal stability of bacteriocin nisin in polylactide-based films. Polym. Degrad. Stabil. 2018;158:31–39. doi: 10.1016/j.polymdegradstab.2018.10.019. DOI
Kolarova Raskova Z., Stahel P., Sedlarikova J., Musilova L., Stupavska M., Lehocky M. The effect of plasma pretreatment and cross-linking degree on the physical and antimicrobial properties of nisin-coated PVA films. Materials. 2018;11:1451. doi: 10.3390/ma11081451. PubMed DOI PMC
Wang P., Tan K.L., Kang E.T. Surface modification of poly(tetrafluoroethylene) films via grafting of poly(ethylene glycol) for reduction in protein adsorption. J. Biomater. Sci. Polym. Ed. 2000;11:169–186. doi: 10.1163/156856200743634. PubMed DOI
Wei O., Haag R. Universal polymer coatings and their representative biomedical applications. Mater. Horiz. 2015;2:567–577. doi: 10.1039/C5MH00089K. DOI
Chu L., Knoll W., Förch R. Pulsed plasma polymerized di(ethylene glycol) monovinyl ether coating for nonfouling surfaces. Chem. Mater. 2006;18:4840–4844. doi: 10.1021/cm061217g. DOI
Li L., Chen S., Zheng J., Ratner B.D., Jiang S. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behaviour. J. Phys. Chem. B. 2005;109:2934–2941. doi: 10.1021/jp0473321. PubMed DOI
Zanini S., Grimoldi E., Riccardi C. Development of controlled releasing surfaces by plasma deposited multilayers. Mater. Chem. Phys. 2013;138:850–855. doi: 10.1016/j.matchemphys.2012.12.070. DOI
Stloukal P., Novak I., Micusik M., Prochazka M., Kucharczyk P., Chodak I., Lehocky M., Sedlarik V. Effect of plasma treatment on the release kinetics of a chemotherapy drug from biodegradable polyester films and polyester urethane films. Int. J. Polym. Mater. 2017;67:161–173. doi: 10.1080/00914037.2017.1309543. DOI
Vasilev K., Ramiasa-MacGregor M. Nanoengineered plasma polymer films for biomedical applications. Adv. Mater. Lett. 2018;9:42–52. doi: 10.5185/amlett.2018.1691. DOI
Sardella E., Palumbo F., Camporeale G., Favia P. Non-equilibrium plasma processing for the preparation of antibacterial surfaces. Materials. 2016;9:515. doi: 10.3390/ma9070515. PubMed DOI PMC
Vasudev M.C., Anderson K.D., Bunning T.J., Tsukruk V.V., Naik R.R. Exploration of plasma-enhanced chemical vapour deposition as a method for thin-film fabrication with biological applications. ACS Appl. Mater. Interfaces. 2013;5:3983–3994. doi: 10.1021/am302989x. PubMed DOI
Förch R., Chifen A.N., Bousquet A., Khor H.L., Jungblut M., Chu L.-Q., Zhang Z., Osey-Mensah I., Sinner E.-K., Knoll W. Recent and expected roles of plasma-polymerized films for biomedical applications. Chem. Vap. Depos. 2007;13:280–294. doi: 10.1002/cvde.200604035. DOI
Gordeev I., Choukourov A., Šimek M., Prukner V., Biederman H. PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge. Plasma Process. Polym. 2012;9:782–791. doi: 10.1002/ppap.201100213. DOI
Stallard C.H.P., Solar P., Biederman H., Dowling D.P. Deposition of non-fouling PEO-like coatings using a low temperature atmospheric pressure plasma jet. Plasma Process. Polym. 2016;13:241–252. doi: 10.1002/ppap.201500034. DOI
Yang Z., Wang J., Li X., Tu Q., Sun H., Huang N. Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films. Appl. Surf. Sci. 2012;258:3378–3385. doi: 10.1016/j.apsusc.2011.11.013. DOI
Cutter C.N., Willett J.L., Siragusa G.R. Improved antimicrobial activity of nisin-incorporated polymer films by formulation change and addition of food grade chelator. Lett. Appl. Microbiol. 2001;33:325–328. doi: 10.1046/j.1472-765X.2001.01005.x. PubMed DOI
Cui H., Bai M., Lin L. Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr. Polym. 2018;179:360–369. doi: 10.1016/j.carbpol.2017.10.011. PubMed DOI
Choukourov A., Hanus J., Kousal J., Grinevich A., Pihosh Y., Slavinska D., Biederman H. Thin polymer films from polyimide vacuum thermal degradation with and without a glow discharge. Vacuum. 2006;80:923–929. doi: 10.1016/j.vacuum.2005.12.012. DOI
Choukourov A., Gordeev I., Ponti J., Uboldi C., Melnichuk I., Vaidulych M., Kousal J., Nikitin D., Hanykova L., Krakovsky I., et al. Microphase-separated PE/PEO thin films prepared by plasma-assisted vapour phase deposition. ACS Appl. Mater. Interfaces. 2016;8:8201–8212. doi: 10.1021/acsami.5b12382. PubMed DOI
Kousal J., Krtous Z., Kolarova Raskova Z., Sedlarikova J., Schäfer J., Kucerova L., Shelemin A., Solar P., Hurajova A., Biederman H., et al. Degradable plasma polymer films with tailored hydrolysis behaviour. Vacuum. 2019 doi: 10.1016/j.vacuum.2019.109062. accepted. DOI
Yakut S., Ulutas H.K., Melnichuk I., Choukourov A., Biederman H., Deger D. Dielectric properties of plasma polymerized poly(ethylene oxide) thin films. Thin Solid Films. 2016;616:279–286. doi: 10.1016/j.tsf.2016.08.034. DOI
Choukourov A., Polonskyi O., Hanus J., Kousal J., Grinevich A., Slavinska D., Biederman H. PEO-like coatings prepared by plasma-based techniques. Plasma Process. Polym. 2009;6:S21–S24. doi: 10.1002/ppap.200930101. DOI
Choukourov A., Gordeev I., Polonskyi O., Artemenko A., Hanykova L., Krakovsky I., Kylian O., Slavinska D., Biederman H. Poly(ethylene oxide)-like Plasma Polymers Produced by Plasma-Assisted Vacuum Evaporation. Plasma Process. Polym. 2010;7:445–458. doi: 10.1002/ppap.200900153. DOI
Choukourov A., Gordeev I., Arzhakov D., Artemenko A., Kousal J., Kylian O., Slavinska D., Biederman H. Does cross-link density of PEO-like plasma polymer influence their resistance to adsorption of fibrinogen? Plasma Process. Polym. 2012;9:48–58. doi: 10.1002/ppap.201100122. DOI
Kim H., Fassihi R. Application of binary polymer in drug release rate modulation. 2. Influence of formulation variables and hydrodynamic conditions on release kinetics. J. Pharm. Sci. 1997;86:323–328. doi: 10.1021/js960307p. PubMed DOI
Bruschi M.L. Strategies to Modify the Drug Release from Pharmaceutical Systems. Elsevier Ltd.; Cambridge, UK: 2015.
Lopez-Garcia J., Cupessala F., Humpolicek P., Lehocky M. Physical and morphological changes of poly(tetrafluoroethylene) after using non-thermal plasma-treatments. Materials. 2018;11:2013. doi: 10.3390/ma11102013. PubMed DOI PMC
Masruroh T.N., Zahirah N.T., Sakti S.P., Santjojo D.J.D., Masruroh T.N. The effect of molecular weight on the surface wettability of polystyrene treated with nitrogen plasma; Proceedings of the IOP Conference Series: Materials Science and Engineering, The 1st Materials Research Society Indonesia Conference and Congress; Yogyakarta, Indonesia. 8–12 October 2017; DOI
Kolska Z., Kasalkova Slepickova N., Siegel J., Svorcik V. Electrokinetic Potential for Characterization of Nanosctructured Solid Flat Surfaces. J. Nano Res. 2013;25:31–39. doi: 10.4028/www.scientific.net/JNanoR.25.31. DOI
Khorasani M.T., Mirzadeh H. Effect of oxygen plasma treatment on surface charge and wettability of PVC blood bag-In vitro assay. Radiat. Phys. Chem. 2007;76:1011–1016. doi: 10.1016/j.radphyschem.2006.10.002. DOI
Pleskunov P., Nikitin D., Tafiichuk R., Khalakhan I., Kolská Z., Choukourov A. Nanophase-separated poly(acrylic acid)/poly(ethylene oxide) plasma polymers for the spatially localized attachment of biomolecules. Plasma Process. Polym. 2019 doi: 10.1002/ppap.201900220. DOI
Xiang C.H., Taylor A.G., Frey M.W. Controlled release of non-ionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J. Appl. Polym. Sci. 2013;127:79–86. doi: 10.1002/app.36943. DOI
Hrabalikova M., Holcapkova P., Suly P., Sedlarik V. Immobilization of bacteriocin nisin into a poly(vinyl alcohol) polymer matrix crosslinked with nontoxic dicarboxylic acid. J. Appl. Polym. Sci. 2016;133 doi: 10.1002/app.43674. DOI