Degradable Poly(ethylene oxide)-Like Plasma Polymer Films Used for the Controlled Release of Nisin

. 2020 Jun 01 ; 12 (6) : . [epub] 20200601

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32492821

Grantová podpora
GA17-10813S Grantová Agentura České Republiky

Poly(ethylene oxide) (PEO)-like thin films were successfully prepared by plasma-assisted vapor thermal deposition (PAVTD). PEO powders with a molar weight (Mw) between 1500 g/mol and 600,000 g/mol were used as bulk precursors. The effect of Mw on the structural and surface properties was analyzed for PEO films prepared at a lower plasma power. Fourier transform (FTIR-ATR) spectroscopy showed that the molecular structure was well preserved regardless of the Mw of the precursors. The stronger impact of the process conditions (the presence/absence of plasma) was proved. Molecular weight polydispersity, as well as wettability, increased in the samples prepared at 5 W. The influence of deposition plasma power (0-30 W) on solubility and permeation properties was evaluated for a bulk precursor of Mw 1500 g/mol. The rate of thickness loss after immersion in water was found to be tunable in this way, with the films prepared at the highest plasma power showing higher stability. The effect of plasma power deposition conditions was also shown during the permeability study. Prepared PEO films were used as a cover, and permeation layers for biologically active nisin molecule and a controlled release of this bacteriocin into water was achieved.

Zobrazit více v PubMed

Ren W., Cheng W., Wang G., Liu Y. Developments in antimicrobial polymers. J. Polym. Sci. Pol. Chem. 2017;55:632–639. doi: 10.1002/pola.28446. DOI

Holcapkova P., Hurajova A., Bazant P., Pummerova M., Sedlarik V. Thermal stability of bacteriocin nisin in polylactide-based films. Polym. Degrad. Stabil. 2018;158:31–39. doi: 10.1016/j.polymdegradstab.2018.10.019. DOI

Kolarova Raskova Z., Stahel P., Sedlarikova J., Musilova L., Stupavska M., Lehocky M. The effect of plasma pretreatment and cross-linking degree on the physical and antimicrobial properties of nisin-coated PVA films. Materials. 2018;11:1451. doi: 10.3390/ma11081451. PubMed DOI PMC

Wang P., Tan K.L., Kang E.T. Surface modification of poly(tetrafluoroethylene) films via grafting of poly(ethylene glycol) for reduction in protein adsorption. J. Biomater. Sci. Polym. Ed. 2000;11:169–186. doi: 10.1163/156856200743634. PubMed DOI

Wei O., Haag R. Universal polymer coatings and their representative biomedical applications. Mater. Horiz. 2015;2:567–577. doi: 10.1039/C5MH00089K. DOI

Chu L., Knoll W., Förch R. Pulsed plasma polymerized di(ethylene glycol) monovinyl ether coating for nonfouling surfaces. Chem. Mater. 2006;18:4840–4844. doi: 10.1021/cm061217g. DOI

Li L., Chen S., Zheng J., Ratner B.D., Jiang S. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behaviour. J. Phys. Chem. B. 2005;109:2934–2941. doi: 10.1021/jp0473321. PubMed DOI

Zanini S., Grimoldi E., Riccardi C. Development of controlled releasing surfaces by plasma deposited multilayers. Mater. Chem. Phys. 2013;138:850–855. doi: 10.1016/j.matchemphys.2012.12.070. DOI

Stloukal P., Novak I., Micusik M., Prochazka M., Kucharczyk P., Chodak I., Lehocky M., Sedlarik V. Effect of plasma treatment on the release kinetics of a chemotherapy drug from biodegradable polyester films and polyester urethane films. Int. J. Polym. Mater. 2017;67:161–173. doi: 10.1080/00914037.2017.1309543. DOI

Vasilev K., Ramiasa-MacGregor M. Nanoengineered plasma polymer films for biomedical applications. Adv. Mater. Lett. 2018;9:42–52. doi: 10.5185/amlett.2018.1691. DOI

Sardella E., Palumbo F., Camporeale G., Favia P. Non-equilibrium plasma processing for the preparation of antibacterial surfaces. Materials. 2016;9:515. doi: 10.3390/ma9070515. PubMed DOI PMC

Vasudev M.C., Anderson K.D., Bunning T.J., Tsukruk V.V., Naik R.R. Exploration of plasma-enhanced chemical vapour deposition as a method for thin-film fabrication with biological applications. ACS Appl. Mater. Interfaces. 2013;5:3983–3994. doi: 10.1021/am302989x. PubMed DOI

Förch R., Chifen A.N., Bousquet A., Khor H.L., Jungblut M., Chu L.-Q., Zhang Z., Osey-Mensah I., Sinner E.-K., Knoll W. Recent and expected roles of plasma-polymerized films for biomedical applications. Chem. Vap. Depos. 2007;13:280–294. doi: 10.1002/cvde.200604035. DOI

Gordeev I., Choukourov A., Šimek M., Prukner V., Biederman H. PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge. Plasma Process. Polym. 2012;9:782–791. doi: 10.1002/ppap.201100213. DOI

Stallard C.H.P., Solar P., Biederman H., Dowling D.P. Deposition of non-fouling PEO-like coatings using a low temperature atmospheric pressure plasma jet. Plasma Process. Polym. 2016;13:241–252. doi: 10.1002/ppap.201500034. DOI

Yang Z., Wang J., Li X., Tu Q., Sun H., Huang N. Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films. Appl. Surf. Sci. 2012;258:3378–3385. doi: 10.1016/j.apsusc.2011.11.013. DOI

Cutter C.N., Willett J.L., Siragusa G.R. Improved antimicrobial activity of nisin-incorporated polymer films by formulation change and addition of food grade chelator. Lett. Appl. Microbiol. 2001;33:325–328. doi: 10.1046/j.1472-765X.2001.01005.x. PubMed DOI

Cui H., Bai M., Lin L. Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr. Polym. 2018;179:360–369. doi: 10.1016/j.carbpol.2017.10.011. PubMed DOI

Choukourov A., Hanus J., Kousal J., Grinevich A., Pihosh Y., Slavinska D., Biederman H. Thin polymer films from polyimide vacuum thermal degradation with and without a glow discharge. Vacuum. 2006;80:923–929. doi: 10.1016/j.vacuum.2005.12.012. DOI

Choukourov A., Gordeev I., Ponti J., Uboldi C., Melnichuk I., Vaidulych M., Kousal J., Nikitin D., Hanykova L., Krakovsky I., et al. Microphase-separated PE/PEO thin films prepared by plasma-assisted vapour phase deposition. ACS Appl. Mater. Interfaces. 2016;8:8201–8212. doi: 10.1021/acsami.5b12382. PubMed DOI

Kousal J., Krtous Z., Kolarova Raskova Z., Sedlarikova J., Schäfer J., Kucerova L., Shelemin A., Solar P., Hurajova A., Biederman H., et al. Degradable plasma polymer films with tailored hydrolysis behaviour. Vacuum. 2019 doi: 10.1016/j.vacuum.2019.109062. accepted. DOI

Yakut S., Ulutas H.K., Melnichuk I., Choukourov A., Biederman H., Deger D. Dielectric properties of plasma polymerized poly(ethylene oxide) thin films. Thin Solid Films. 2016;616:279–286. doi: 10.1016/j.tsf.2016.08.034. DOI

Choukourov A., Polonskyi O., Hanus J., Kousal J., Grinevich A., Slavinska D., Biederman H. PEO-like coatings prepared by plasma-based techniques. Plasma Process. Polym. 2009;6:S21–S24. doi: 10.1002/ppap.200930101. DOI

Choukourov A., Gordeev I., Polonskyi O., Artemenko A., Hanykova L., Krakovsky I., Kylian O., Slavinska D., Biederman H. Poly(ethylene oxide)-like Plasma Polymers Produced by Plasma-Assisted Vacuum Evaporation. Plasma Process. Polym. 2010;7:445–458. doi: 10.1002/ppap.200900153. DOI

Choukourov A., Gordeev I., Arzhakov D., Artemenko A., Kousal J., Kylian O., Slavinska D., Biederman H. Does cross-link density of PEO-like plasma polymer influence their resistance to adsorption of fibrinogen? Plasma Process. Polym. 2012;9:48–58. doi: 10.1002/ppap.201100122. DOI

Kim H., Fassihi R. Application of binary polymer in drug release rate modulation. 2. Influence of formulation variables and hydrodynamic conditions on release kinetics. J. Pharm. Sci. 1997;86:323–328. doi: 10.1021/js960307p. PubMed DOI

Bruschi M.L. Strategies to Modify the Drug Release from Pharmaceutical Systems. Elsevier Ltd.; Cambridge, UK: 2015.

Lopez-Garcia J., Cupessala F., Humpolicek P., Lehocky M. Physical and morphological changes of poly(tetrafluoroethylene) after using non-thermal plasma-treatments. Materials. 2018;11:2013. doi: 10.3390/ma11102013. PubMed DOI PMC

Masruroh T.N., Zahirah N.T., Sakti S.P., Santjojo D.J.D., Masruroh T.N. The effect of molecular weight on the surface wettability of polystyrene treated with nitrogen plasma; Proceedings of the IOP Conference Series: Materials Science and Engineering, The 1st Materials Research Society Indonesia Conference and Congress; Yogyakarta, Indonesia. 8–12 October 2017; DOI

Kolska Z., Kasalkova Slepickova N., Siegel J., Svorcik V. Electrokinetic Potential for Characterization of Nanosctructured Solid Flat Surfaces. J. Nano Res. 2013;25:31–39. doi: 10.4028/www.scientific.net/JNanoR.25.31. DOI

Khorasani M.T., Mirzadeh H. Effect of oxygen plasma treatment on surface charge and wettability of PVC blood bag-In vitro assay. Radiat. Phys. Chem. 2007;76:1011–1016. doi: 10.1016/j.radphyschem.2006.10.002. DOI

Pleskunov P., Nikitin D., Tafiichuk R., Khalakhan I., Kolská Z., Choukourov A. Nanophase-separated poly(acrylic acid)/poly(ethylene oxide) plasma polymers for the spatially localized attachment of biomolecules. Plasma Process. Polym. 2019 doi: 10.1002/ppap.201900220. DOI

Xiang C.H., Taylor A.G., Frey M.W. Controlled release of non-ionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J. Appl. Polym. Sci. 2013;127:79–86. doi: 10.1002/app.36943. DOI

Hrabalikova M., Holcapkova P., Suly P., Sedlarik V. Immobilization of bacteriocin nisin into a poly(vinyl alcohol) polymer matrix crosslinked with nontoxic dicarboxylic acid. J. Appl. Polym. Sci. 2016;133 doi: 10.1002/app.43674. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...