The Effect of Plasma Pretreatment and Cross-Linking Degree on the Physical and Antimicrobial Properties of Nisin-Coated PVA Films
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30115861
PubMed Central
PMC6120017
DOI
10.3390/ma11081451
PII: ma11081451
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial film, nisin, physical properties, plasma treatment polyvinyl alcohol, surface characterization,
- Publikační typ
- časopisecké články MeSH
Stable antimicrobial nisin layers were prepared on the carrying medium-polyvinyl alcohol (PVA) films, crosslinked by glutaric acid. Surface plasma dielectric coplanar surface barrier discharge (DCSBD) modification of polyvinyl alcohol was used to improve the hydrophilic properties and to provide better adhesion of biologically active peptide-nisin to the polymer. The surface modification of films was studied in correlation to their cross-linking degree. Nisin was attached directly from the salt solution of the commercial product. In order to achieve a stable layer, the initial nisin concentration and the following release were investigated using chromatographic methods. The uniformity and stability of the layers was evaluated by means of zeta potential measurements, and for the surface changes of hydrophilic character, the water contact angle measurements were provided. The nisin long-term stability on the PVA films was confirmed by tricine polyacrylamide gel electrophoresis (SDS-PAGE) and by antimicrobial assay. It was found that PVA can serve as a suitable carrying medium for nisin with tunable properties by plasma treatment and crosslinking degree.
Zobrazit více v PubMed
Cho D., Hoepker N., Frey M.W. Fabrication and characterization of conducting polyvinyl alcohol nanofibers. Mater. Lett. 2012;68:293–295. doi: 10.1016/j.matlet.2011.10.109. DOI
Bosco R., Edreira E.U., Wolke J.G., Leeuwenbugrh C.G., Van Den Beucken J., Jansen J.A. Instructive coatings for biological guidance of bone implants. Surf. Coat. Technol. 2013;233:91–98. doi: 10.1016/j.surfcoat.2013.02.039. DOI
Hrabalikova M., Merchan M., Ganbold S., Sedlarik V., Valasek P., Saha P. Flexible polyvinyl alcohol/2-hydroxypropanoic acid films: effect of residual acetyl moieties on mechanical, thermal and antibacterial properties. J. Polym. Eng. 2015;35:319–327. doi: 10.1515/polyeng-2014-0125. DOI
Yin H., Mix R., Friedrich J.F. Combination of plasma-chemical and wet-chemical processes-a simple way to optimize interfaces in metal-polymer composites for maximal adhesion. J. Adhes. Sci. Technol. 2011;25:799.
Ducheyne P., Healy K., Dietmar E., Hutmacher E., Grainger D.W., Kirkpatrick C.J. Comprehensive Biomaterials. [(accessed on 13 August 2018)]; Available online: https://www.elsevier.com/books/comprehensive-biomaterials/ducheyne/978-0-08-055302-3.
Ryder M., Schilke K.F., Auxier J.A., McGuire J., Neff J. Nisin adsorption to poly-ethylene oxide layers and its resistance to elution in the presence of fibrinogen. J. Colloid Interface Sci. 2010;350:194–199. doi: 10.1016/j.jcis.2010.06.038. PubMed DOI PMC
Duan J., Park S.I., Daeschel M.A., Zhao Y. Antimicrobialchitosan Lysozyme (CL) films and coatings for enhancingmicrobial safety of Mozzarella cheese. Food Microbiol. Saf. 2007;72:355–361. PubMed
Saraf A., Johnson K., Lind M.L. Poly(vinyl) alcohol coating of the support layer of reverse osmosis membranes to enhance performance in forward osmosis. Desalination. 2014;333:1–9. doi: 10.1016/j.desal.2013.11.024. DOI
Xiang C., Taylor A.G., Hinestroza J.P., Frey M.W. Controlled release of nonionic compounds from poly (lactic acid)/cellulose nanocrystal nanocomposite fibers. J. Appl. Polym. Sci. 2013;127:79–86. doi: 10.1002/app.36943. DOI
Karam L., Jama C., Dhulster P., Chibib N. Study of surface interactions between peptides, materials and bacteria for setting up antimicrobial surfaces and active food packaging. J. Mater. Environ. Sci. 2013;4:798–821.
Resa C.P., Jagus R.J., Gerschenson L.N. Effect of natamycin, nisin and glycerol on the physicochemical properties, roughness and hydrophobicity of tapioca starch edible films. Mater. Sci. Eng. 2014;40:281–287. doi: 10.1016/j.msec.2014.04.005. PubMed DOI
Imran M., Klouj A., Revol-Junelles A.M., Desobry S. Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. J. Food Eng. 2014;143:178–185. doi: 10.1016/j.jfoodeng.2014.06.040. DOI
Zasada K., Lukasiewitz-Atanasov M., Klysik K., Lewandowska J., Gzyl Malcher B., Malinowska A. One-component ultrathin films based on poly (vinyl alcohol) as stabilizing coating for phenytoin-loaded liposomes. Colloids Surf. B. 2015;135:133–142. doi: 10.1016/j.colsurfb.2015.07.033. PubMed DOI
Park G.Y., Park S.J., Choi M.Y., Koo I.G., Byun J.H., Hong J.W., Sim J.Y., Collins G.J., Lee J.K. Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci. Technol. 2012;21:043001. doi: 10.1088/0963-0252/21/4/043001. DOI
Kim K., Lee S.M., Mishra A., Yeom G. Atmospheric pressure plasmas for surface modification of flexible and printed electronic device. Thin Solid Films. 2015;598:315–334. doi: 10.1016/j.tsf.2015.05.035. DOI
Donegan M., Dowling D.P. Activation of PET using an RF atmospheric plasma system. Surf. Coat. Technol. 2013;234:53–59. doi: 10.1016/j.surfcoat.2013.03.002. DOI
Gubskaya A.V., Khan L.J., Valenzuela L.M., Lysniak L.K. Ivestigating the release of a hydrophobic peptide from matrices of biodegradable polymers: An ittegrated method approach. Polymer. 2013;54:3806–3820. doi: 10.1016/j.polymer.2013.05.038. PubMed DOI PMC
Nisol B., Reniers F. Challenges in the characteriyation of plasma polymers using XPS. J. Electron. Spectrosc. Relat. Phenom. 2015;200:311–331. doi: 10.1016/j.elspec.2015.05.002. DOI
Zuo B., Hu Y., Lu X., Zhang S., Fan H., Wang X. Surface Properties of Poly (vinyl alcohol) Films Dominated by Spontaneous Adsorption of Ethanol and Governed by Hydrogen Bonding. J. Phys. Chem. C. 2013;117:3396–3406. doi: 10.1021/jp3113304. DOI
Schilke K.F., McGuire J. Detection of nisin and fibrinogen adsorption on poly (ethylene oxide) coated polyurethane surfaces by time-of-flight secondary ion mass spectrometry (TOF-SI MS) J. Colloid Interface Sci. 2011;358:14–24. doi: 10.1016/j.jcis.2011.03.014. PubMed DOI PMC
Kafi K., Magniez K., Fox L.B. Surface properties relationship of atmospheric plasma treated jute composites. Compos. Sci. Technol. 2011;71:1692–1698. doi: 10.1016/j.compscitech.2011.07.011. DOI
Siow K.S., Brichter L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI
Bilek F., Krizova T., Lehocky M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloid Surf. B Biointerfaces. 2011;88:440–447. doi: 10.1016/j.colsurfb.2011.07.027. PubMed DOI
Friedrich F.J. The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design. Wiley-VCH; Weinheim, Germany: 2012.
Roth J.R. Industrial Plasma Engineering, Vol. II–Applications to Non-Thermal Plasma Processing (ISBN 7503 05444) Institute of Physics Publishing; Bristol, PA, USA: 2001.
Černák M., Hudec I., Kováčik D., Zahoranová A. Diffuse Coplanar Surface Barrier Discharge and Its Applications for In-Line Processing of Low-Added-Value Materials. [(accessed on 13 August 2018)];2009 Available online: https://www.cambridge.org/core/journals/the-european-physical-journal-applied-physics/article/diffuse-coplanar-surface-barrier-discharge-and-its-applications-for-inline-processing-of-lowaddedvalue-materials/C072CA66231A6B78F2918F260101F39E.
ROPLASS (Robust Plasma Systems) [(accessed on 4 May 2018)]; Available online: http:// http://www.roplass.cz/roplass-robust-plasma-systems.
Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics and industrial applications. Plasma Chem. Plasma Process. 2003;23:1–46. doi: 10.1023/A:1022470901385. DOI
Čech J., Hanusová J., Sťahel P., Černák M. Diffuse coplanar surface barrier discharge in artificial air: statistical behaviour of microdischarges. Open Chem. 2015;13:528–540. doi: 10.1515/chem-2015-0062. DOI
Fuchs S. Ph.D. Thesis. Ludwig-Maximilians-Universität München; Munich, Germany: 2010. Gelatin Nanoparticles as a Modern Platform for Drug Delivery-Formulation Development and Immunotherapeutic Strategies.
Imasaka K., Khaled U., Wei S., Suehiro J. pH dependence of water-solubility of single-walled carbon nanotubes treated by microplasma in aqueous solution. Electroanalysis. 2004:16.
Fang D.L., Chen Y., Xu B., Ren K., He Z.Y., He L.L., Lei Y., Fan C.M., Song X.R. Development of Lipid-Shell and Polymer Core Nanoparticles with Water-Soluble Salidroside for Anti-Cancer Therapy. Int. J. Mol. Sci. 2014;15:3373–3388. doi: 10.3390/ijms15033373. PubMed DOI PMC
Rachmawati H., Haryadi B. The Influence of polymer structure on the physical characteristic of intraoral film containing BSA-loaded nanoemulsion. J. Nanomed. Nanotechnol. 2014;5:1. doi: 10.4172/2157-7439.1000187. DOI
Cruz E.F., Zheng Y., Torres E., Li W., Song W., Burugapalli K. Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int. J. Electrochem. Sci. 2012;7:3577–3590.
Prombutara P., Kulwatthanasal Y., Supaka N., Samarala I., Chareonpornwattana S. Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control. 2012;24:184–190. doi: 10.1016/j.foodcont.2011.09.025. DOI
Malayoglu U., Tekin K.C., Shrestha S. Influence of post-treatment on the corrosion resistance of PEO coated AM50B and AM60B Mg alloys. Surf. Coat. Technol. 2010;205:1793–1798. doi: 10.1016/j.surfcoat.2010.08.022. DOI
Weeks M.D., Subramanian R., Vaidya A., Mumm D.R. Defining optimal morphology of the bond coat–thermal barrier coating interface of air-plasma sprayed thermal barrier coating systems. Surf. Coat. Technol. 2015;273:50–59. doi: 10.1016/j.surfcoat.2015.02.012. DOI
Chang J.Y., Godovsky D.Y., Han M.J., Hassan C.M., Kim J., Lee B., Lee Y., Peppas N.A., Quirk R.P., Yoo T. Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites. Springer; Heidelberg/Berlin, Germany: 2000.
Alkan C., Gunther E., Hiebler S., Himpel M. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials. Energy Convers. Manag. 2012;64:364–370. doi: 10.1016/j.enconman.2012.06.003. DOI
Adamczyk Z., Nattich M., Wasilewska M., Zaucha M. Colloid particle and protein deposition–Electokinetic studies. Adv. Colloid Interface Sci. 2011;168:3–28. doi: 10.1016/j.cis.2011.04.002. PubMed DOI
Wiśniewski J.R., Gaugaz F.Z. Fast and Sensitive Total Protein and Peptide Assays for Proteomic Analysis. Anal. Chem. 2015;87:4110–4116. doi: 10.1021/ac504689z. PubMed DOI
Dorgan K.M., Wooderchak W.L., Wynn D.P., Karschner E.L., Alfaro J.F., Cui Y., Zhou Z.S., Hevel J.M. An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal. Biochem. 2006;350:249–255. doi: 10.1016/j.ab.2006.01.004. PubMed DOI
Miyake N., Miura T., Sato T., Yoshinari M. Effect of zeta potentials on bovine serum albumin adsorption on crown composite resin surfaces in vitro. J. Biomed. Sci. Eng. 2013;6:273–276. doi: 10.4236/jbise.2013.63034. DOI
Sze A., Erickson D., Ren L., Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003;261:402–410. doi: 10.1016/S0021-9797(03)00142-5. PubMed DOI
Habalikova M., Holcapkova P., Suly P., Sedlarik V. Immobilization of bacteriocin nisin into a poly(vinyl alcohol) cross-linked with non-toxic dicarboxylic acid. J. Appl. Polym. Sci. 2016;133:43674. doi: 10.1002/app.43674. DOI
Song Y.W., Shan D.Y., Han E.H. High corrosion resistance of electroless composite plat- ing coatings on AZ91D magnesium alloys. Electrochim. Acta. 2008;53:2135–2143. doi: 10.1016/j.electacta.2007.09.026. DOI
Belgacem M.N., Gandini A. The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos. Interfaces. 2005;12:41–75. doi: 10.1163/1568554053542188. DOI
Cho D., Lee S., Frey M.W. Characterizing zeta potential of functional nanofibers in a microfluidic device. J. Colloid Interface Sci. 2012;372:252–260. doi: 10.1016/j.jcis.2012.01.007. PubMed DOI
Salgın S., Salgın U., Bahadır S. Zeta Potentials and Isoelectric points of biomolecules: The effects of ion types and ionic strengths. Int. J. Electrochem. Sci. 2012;7:12404–12414.
Balcão V.M., Costa C.I., Matos C.M., Moutinho C.G., Amorim M., Pintado M.E., Gomes A.P., Vila M.M., Teixeira J.A. Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll. 2013;32:425–431. doi: 10.1016/j.foodhyd.2013.02.004. DOI