The Effect of Plasma Pretreatment and Cross-Linking Degree on the Physical and Antimicrobial Properties of Nisin-Coated PVA Films

. 2018 Aug 16 ; 11 (8) : . [epub] 20180816

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30115861

Stable antimicrobial nisin layers were prepared on the carrying medium-polyvinyl alcohol (PVA) films, crosslinked by glutaric acid. Surface plasma dielectric coplanar surface barrier discharge (DCSBD) modification of polyvinyl alcohol was used to improve the hydrophilic properties and to provide better adhesion of biologically active peptide-nisin to the polymer. The surface modification of films was studied in correlation to their cross-linking degree. Nisin was attached directly from the salt solution of the commercial product. In order to achieve a stable layer, the initial nisin concentration and the following release were investigated using chromatographic methods. The uniformity and stability of the layers was evaluated by means of zeta potential measurements, and for the surface changes of hydrophilic character, the water contact angle measurements were provided. The nisin long-term stability on the PVA films was confirmed by tricine polyacrylamide gel electrophoresis (SDS-PAGE) and by antimicrobial assay. It was found that PVA can serve as a suitable carrying medium for nisin with tunable properties by plasma treatment and crosslinking degree.

Zobrazit více v PubMed

Cho D., Hoepker N., Frey M.W. Fabrication and characterization of conducting polyvinyl alcohol nanofibers. Mater. Lett. 2012;68:293–295. doi: 10.1016/j.matlet.2011.10.109. DOI

Bosco R., Edreira E.U., Wolke J.G., Leeuwenbugrh C.G., Van Den Beucken J., Jansen J.A. Instructive coatings for biological guidance of bone implants. Surf. Coat. Technol. 2013;233:91–98. doi: 10.1016/j.surfcoat.2013.02.039. DOI

Hrabalikova M., Merchan M., Ganbold S., Sedlarik V., Valasek P., Saha P. Flexible polyvinyl alcohol/2-hydroxypropanoic acid films: effect of residual acetyl moieties on mechanical, thermal and antibacterial properties. J. Polym. Eng. 2015;35:319–327. doi: 10.1515/polyeng-2014-0125. DOI

Yin H., Mix R., Friedrich J.F. Combination of plasma-chemical and wet-chemical processes-a simple way to optimize interfaces in metal-polymer composites for maximal adhesion. J. Adhes. Sci. Technol. 2011;25:799.

Ducheyne P., Healy K., Dietmar E., Hutmacher E., Grainger D.W., Kirkpatrick C.J. Comprehensive Biomaterials. [(accessed on 13 August 2018)]; Available online: https://www.elsevier.com/books/comprehensive-biomaterials/ducheyne/978-0-08-055302-3.

Ryder M., Schilke K.F., Auxier J.A., McGuire J., Neff J. Nisin adsorption to poly-ethylene oxide layers and its resistance to elution in the presence of fibrinogen. J. Colloid Interface Sci. 2010;350:194–199. doi: 10.1016/j.jcis.2010.06.038. PubMed DOI PMC

Duan J., Park S.I., Daeschel M.A., Zhao Y. Antimicrobialchitosan Lysozyme (CL) films and coatings for enhancingmicrobial safety of Mozzarella cheese. Food Microbiol. Saf. 2007;72:355–361. PubMed

Saraf A., Johnson K., Lind M.L. Poly(vinyl) alcohol coating of the support layer of reverse osmosis membranes to enhance performance in forward osmosis. Desalination. 2014;333:1–9. doi: 10.1016/j.desal.2013.11.024. DOI

Xiang C., Taylor A.G., Hinestroza J.P., Frey M.W. Controlled release of nonionic compounds from poly (lactic acid)/cellulose nanocrystal nanocomposite fibers. J. Appl. Polym. Sci. 2013;127:79–86. doi: 10.1002/app.36943. DOI

Karam L., Jama C., Dhulster P., Chibib N. Study of surface interactions between peptides, materials and bacteria for setting up antimicrobial surfaces and active food packaging. J. Mater. Environ. Sci. 2013;4:798–821.

Resa C.P., Jagus R.J., Gerschenson L.N. Effect of natamycin, nisin and glycerol on the physicochemical properties, roughness and hydrophobicity of tapioca starch edible films. Mater. Sci. Eng. 2014;40:281–287. doi: 10.1016/j.msec.2014.04.005. PubMed DOI

Imran M., Klouj A., Revol-Junelles A.M., Desobry S. Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. J. Food Eng. 2014;143:178–185. doi: 10.1016/j.jfoodeng.2014.06.040. DOI

Zasada K., Lukasiewitz-Atanasov M., Klysik K., Lewandowska J., Gzyl Malcher B., Malinowska A. One-component ultrathin films based on poly (vinyl alcohol) as stabilizing coating for phenytoin-loaded liposomes. Colloids Surf. B. 2015;135:133–142. doi: 10.1016/j.colsurfb.2015.07.033. PubMed DOI

Park G.Y., Park S.J., Choi M.Y., Koo I.G., Byun J.H., Hong J.W., Sim J.Y., Collins G.J., Lee J.K. Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci. Technol. 2012;21:043001. doi: 10.1088/0963-0252/21/4/043001. DOI

Kim K., Lee S.M., Mishra A., Yeom G. Atmospheric pressure plasmas for surface modification of flexible and printed electronic device. Thin Solid Films. 2015;598:315–334. doi: 10.1016/j.tsf.2015.05.035. DOI

Donegan M., Dowling D.P. Activation of PET using an RF atmospheric plasma system. Surf. Coat. Technol. 2013;234:53–59. doi: 10.1016/j.surfcoat.2013.03.002. DOI

Gubskaya A.V., Khan L.J., Valenzuela L.M., Lysniak L.K. Ivestigating the release of a hydrophobic peptide from matrices of biodegradable polymers: An ittegrated method approach. Polymer. 2013;54:3806–3820. doi: 10.1016/j.polymer.2013.05.038. PubMed DOI PMC

Nisol B., Reniers F. Challenges in the characteriyation of plasma polymers using XPS. J. Electron. Spectrosc. Relat. Phenom. 2015;200:311–331. doi: 10.1016/j.elspec.2015.05.002. DOI

Zuo B., Hu Y., Lu X., Zhang S., Fan H., Wang X. Surface Properties of Poly (vinyl alcohol) Films Dominated by Spontaneous Adsorption of Ethanol and Governed by Hydrogen Bonding. J. Phys. Chem. C. 2013;117:3396–3406. doi: 10.1021/jp3113304. DOI

Schilke K.F., McGuire J. Detection of nisin and fibrinogen adsorption on poly (ethylene oxide) coated polyurethane surfaces by time-of-flight secondary ion mass spectrometry (TOF-SI MS) J. Colloid Interface Sci. 2011;358:14–24. doi: 10.1016/j.jcis.2011.03.014. PubMed DOI PMC

Kafi K., Magniez K., Fox L.B. Surface properties relationship of atmospheric plasma treated jute composites. Compos. Sci. Technol. 2011;71:1692–1698. doi: 10.1016/j.compscitech.2011.07.011. DOI

Siow K.S., Brichter L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI

Bilek F., Krizova T., Lehocky M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloid Surf. B Biointerfaces. 2011;88:440–447. doi: 10.1016/j.colsurfb.2011.07.027. PubMed DOI

Friedrich F.J. The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design. Wiley-VCH; Weinheim, Germany: 2012.

Roth J.R. Industrial Plasma Engineering, Vol. II–Applications to Non-Thermal Plasma Processing (ISBN 7503 05444) Institute of Physics Publishing; Bristol, PA, USA: 2001.

Černák M., Hudec I., Kováčik D., Zahoranová A. Diffuse Coplanar Surface Barrier Discharge and Its Applications for In-Line Processing of Low-Added-Value Materials. [(accessed on 13 August 2018)];2009 Available online: https://www.cambridge.org/core/journals/the-european-physical-journal-applied-physics/article/diffuse-coplanar-surface-barrier-discharge-and-its-applications-for-inline-processing-of-lowaddedvalue-materials/C072CA66231A6B78F2918F260101F39E.

ROPLASS (Robust Plasma Systems) [(accessed on 4 May 2018)]; Available online: http:// http://www.roplass.cz/roplass-robust-plasma-systems.

Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics and industrial applications. Plasma Chem. Plasma Process. 2003;23:1–46. doi: 10.1023/A:1022470901385. DOI

Čech J., Hanusová J., Sťahel P., Černák M. Diffuse coplanar surface barrier discharge in artificial air: statistical behaviour of microdischarges. Open Chem. 2015;13:528–540. doi: 10.1515/chem-2015-0062. DOI

Fuchs S. Ph.D. Thesis. Ludwig-Maximilians-Universität München; Munich, Germany: 2010. Gelatin Nanoparticles as a Modern Platform for Drug Delivery-Formulation Development and Immunotherapeutic Strategies.

Imasaka K., Khaled U., Wei S., Suehiro J. pH dependence of water-solubility of single-walled carbon nanotubes treated by microplasma in aqueous solution. Electroanalysis. 2004:16.

Fang D.L., Chen Y., Xu B., Ren K., He Z.Y., He L.L., Lei Y., Fan C.M., Song X.R. Development of Lipid-Shell and Polymer Core Nanoparticles with Water-Soluble Salidroside for Anti-Cancer Therapy. Int. J. Mol. Sci. 2014;15:3373–3388. doi: 10.3390/ijms15033373. PubMed DOI PMC

Rachmawati H., Haryadi B. The Influence of polymer structure on the physical characteristic of intraoral film containing BSA-loaded nanoemulsion. J. Nanomed. Nanotechnol. 2014;5:1. doi: 10.4172/2157-7439.1000187. DOI

Cruz E.F., Zheng Y., Torres E., Li W., Song W., Burugapalli K. Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int. J. Electrochem. Sci. 2012;7:3577–3590.

Prombutara P., Kulwatthanasal Y., Supaka N., Samarala I., Chareonpornwattana S. Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control. 2012;24:184–190. doi: 10.1016/j.foodcont.2011.09.025. DOI

Malayoglu U., Tekin K.C., Shrestha S. Influence of post-treatment on the corrosion resistance of PEO coated AM50B and AM60B Mg alloys. Surf. Coat. Technol. 2010;205:1793–1798. doi: 10.1016/j.surfcoat.2010.08.022. DOI

Weeks M.D., Subramanian R., Vaidya A., Mumm D.R. Defining optimal morphology of the bond coat–thermal barrier coating interface of air-plasma sprayed thermal barrier coating systems. Surf. Coat. Technol. 2015;273:50–59. doi: 10.1016/j.surfcoat.2015.02.012. DOI

Chang J.Y., Godovsky D.Y., Han M.J., Hassan C.M., Kim J., Lee B., Lee Y., Peppas N.A., Quirk R.P., Yoo T. Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites. Springer; Heidelberg/Berlin, Germany: 2000.

Alkan C., Gunther E., Hiebler S., Himpel M. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials. Energy Convers. Manag. 2012;64:364–370. doi: 10.1016/j.enconman.2012.06.003. DOI

Adamczyk Z., Nattich M., Wasilewska M., Zaucha M. Colloid particle and protein deposition–Electokinetic studies. Adv. Colloid Interface Sci. 2011;168:3–28. doi: 10.1016/j.cis.2011.04.002. PubMed DOI

Wiśniewski J.R., Gaugaz F.Z. Fast and Sensitive Total Protein and Peptide Assays for Proteomic Analysis. Anal. Chem. 2015;87:4110–4116. doi: 10.1021/ac504689z. PubMed DOI

Dorgan K.M., Wooderchak W.L., Wynn D.P., Karschner E.L., Alfaro J.F., Cui Y., Zhou Z.S., Hevel J.M. An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal. Biochem. 2006;350:249–255. doi: 10.1016/j.ab.2006.01.004. PubMed DOI

Miyake N., Miura T., Sato T., Yoshinari M. Effect of zeta potentials on bovine serum albumin adsorption on crown composite resin surfaces in vitro. J. Biomed. Sci. Eng. 2013;6:273–276. doi: 10.4236/jbise.2013.63034. DOI

Sze A., Erickson D., Ren L., Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003;261:402–410. doi: 10.1016/S0021-9797(03)00142-5. PubMed DOI

Habalikova M., Holcapkova P., Suly P., Sedlarik V. Immobilization of bacteriocin nisin into a poly(vinyl alcohol) cross-linked with non-toxic dicarboxylic acid. J. Appl. Polym. Sci. 2016;133:43674. doi: 10.1002/app.43674. DOI

Song Y.W., Shan D.Y., Han E.H. High corrosion resistance of electroless composite plat- ing coatings on AZ91D magnesium alloys. Electrochim. Acta. 2008;53:2135–2143. doi: 10.1016/j.electacta.2007.09.026. DOI

Belgacem M.N., Gandini A. The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos. Interfaces. 2005;12:41–75. doi: 10.1163/1568554053542188. DOI

Cho D., Lee S., Frey M.W. Characterizing zeta potential of functional nanofibers in a microfluidic device. J. Colloid Interface Sci. 2012;372:252–260. doi: 10.1016/j.jcis.2012.01.007. PubMed DOI

Salgın S., Salgın U., Bahadır S. Zeta Potentials and Isoelectric points of biomolecules: The effects of ion types and ionic strengths. Int. J. Electrochem. Sci. 2012;7:12404–12414.

Balcão V.M., Costa C.I., Matos C.M., Moutinho C.G., Amorim M., Pintado M.E., Gomes A.P., Vila M.M., Teixeira J.A. Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll. 2013;32:425–431. doi: 10.1016/j.foodhyd.2013.02.004. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Degradable Poly(ethylene oxide)-Like Plasma Polymer Films Used for the Controlled Release of Nisin

. 2020 Jun 01 ; 12 (6) : . [epub] 20200601

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...