Effect of the configuration of poly(lactic acid) and content of poly(oxyethylene) blocks to the structure and functional properties of poly(lactic acid)-block-poly(oxirane)-based nanofibrous electrospun polyester-ether-urethanes used as potential drug-delivery system
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
15-08287Y
Grantová Agentura České Republiky - International
67985874.
RVO - International
CEP - Centrální evidence projektů
67985874
RVO - International
CEP - Centrální evidence projektů
15-08287Y
Czech Science Foundation - International
CZ.1.05/2.1.00/19.0409
Ministry of Education, Youth and Sports of the Czech Republic within the NPU I programme - International
LO1504
Ministry of Education, Youth and Sports of the Czech Republic within the NPU I programme - International
PubMed
30690889
DOI
10.1002/jbm.b.34331
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic, degradation, drug delivery, electrospinning, nanofibers, poly(lactic acid), polyester-urethanes, vancomycin,
- MeSH
- antibakteriální látky * chemie farmakologie MeSH
- buňky NIH 3T3 MeSH
- lékové transportní systémy * MeSH
- myši MeSH
- nanovlákna chemie MeSH
- polyestery chemie farmakologie MeSH
- polyethylenglykoly chemie farmakologie MeSH
- polyurethany chemie farmakologie MeSH
- testování materiálů * MeSH
- vankomycin * chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky * MeSH
- poly(lactide) MeSH Prohlížeč
- polyestery MeSH
- polyethylenglykoly MeSH
- polyurethany MeSH
- vankomycin * MeSH
Poly(lactic acid)-block-poly(oxirane)s (PLA-b-POE) of various compositions were prepared using a one-pot approach and then extended in a reaction with l-lysine diethyl ester diisocyanate, thereby forming polyester-ether-urethanes (PEU) with prolonged chains and units with increased degradability. The PEUs are processed by electrospinning to prepare degradable nanofibrous sheet materials with and without encapsulating the antibiotic Vancomycin (VAC). PLA block isomerism and POE blocks oligomeric content (1000 g/mol) affect the thermal properties, processability, nanofibrous sheet morphology, abiotic degradation, cytocompatibility, and encapsulated antibiotic release rate of prepared PEUs. Therefore, our findings provide an effective approach to tuning the functional properties of these advanced biocompatible materials. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2378-2387, 2019.
Zobrazit více v PubMed
Inkinen S, Hakkarainen M, Albertsson AC, Södergård A. From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors. Biomacromolecules 2011;12:523-532.
Tsuji H. Biopolymers: Biology, Chemistry, Biotechnology, Applications, Polyesters III. In: Doi Y, Steinbüchel A, editors. Polylactides. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2002. pp. 129-178.
Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 2010;101:8493-8501.
Ikada Y. Challenges in tissue engineering. J R Soc Interface 2006;3:589-601.
Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 2009;44:5713-5724.
Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, George G. Lifetime prediction of biodegradable polymers. Prog Polym Sci 2017;71:144-189.
Vert M. After soft tissues, bone, drug delivery and packaging, PLA aims at blood. Eur Polym J 2015;68:516-525.
Favre HA, Powell WH, editors. Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (“Blue Book”). Cambridge, UK: RSC Publishing; 2014.
Barón M, Hellwich K-H, Hess M, et al. Glossary of class names of polymers based on chemical structure and molecular architecture. Pure Appl Chem 2009;81:1131-1186.
Jones RG, Kahovec J, Stepto R, Wilks ES, Hess M, Kitayama T, Metanomski WV, Compendium of Polymer Terminology and Nomenclature, editors. IUPAC Recommendations 2008 (the “Purple Book”). Cambridge, UK: RSC Publishing; 2009.
Peng Q, Mahmood K, Wu Y, Liu Z, Wei L, Yuan H, Yang R. Effective binary catalysts of BrØnsted acidic ionic liquids and stannous chloride dihydrate for melt polycondensation of L-lactic acid. Mol Catal 2017;434:140-145.
Di Martino A, Kucharczyk P, Zedník J, Sedlarik V. Chitosan grafted low molecular weight polylactic acid for protein encapsulation and burst effect reduction. Int J Pharm 2015;496:912-921.
Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 2004;104:6147-6176.
Matta AK, Rao RU, Suman KNS, Rambabu V. Preparation and characterization of biodegradable PLA/PCL polymeric blends. Procedia Mater Sci 2014;6:1266-1270.
Huang MH, Coudane J, Li S, Vert M. Methylated and pegylated PLA-PCL-PLA block copolymers via the chemical modification of Di-hydroxy PCL combined with the ring opening polymerization of lactide. J Polym Sci Part A Polym Chem 2005;43:4196-4205.
Pavelková A, Kucharczyk P, Kuceková Z, Zedník J, Sedlařík V. Non-toxic polyester urethanes based on poly(lactic acid), poly(ethylene glycol) and lysine diisocyanate. J Bioact Compat Polym 2017;32:225-241.
Feng L, Bian X, Li G, Chen Z, Chen X. Compatibility, mechanical properties and stability of blends of polylactide and polyurethane based on poly(ethylene glycol)-b-polylactide copolymers by chain extension with diisocyanate. Polym Degrad Stab 2016;125:148-155.
Loiola LMD, Cortez Tornello PR, Abraham GA, Felisberti MI. Amphiphilic electrospun scaffolds of PLLA-PEO-PPO block copolymers: Preparation, characterization and drug-release behaviour. RSC Adv 2017;7:161-172.
Visco A, Nocita D, Giamporcaro A, Ronca S, Forte G, Pistone A, Espro C. Effect of ethyl Ester L-lysine Triisocyanate addition to produce reactive PLA/PCL bio-polyester blends for biomedical applications. J Mech Behav Biomed Mater 2017;68:308-317.
Pavelková A, Kucharczyk P, Stloukal P, Koutny M, Sedlarik V. Novel poly(lactic acid)-poly(ethylene oxide) chain-linked copolymer and its application in nano-encapsulation. Polym Adv Technol 2014;25:595-604.
Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, du Toit LC, Ndesendo VMK. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013;2013:1-22.
Song P, Sang L, Jin C, Wei Z. Temperature-dependent polymorphic crystallization of poly(L-lactide)s on the basis of optical purity and microstructure. Polymer 2018;134:163-174.
Drosou CG, Krokida MK, Biliaderis CG. Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technol 2017;35:139-162.
Seymour RW, Estes GM, Cooper SL. Infrared studies of segmented Polyurethan elastomers. I. Hydrogen bonding. Macromolecules 1970;3:579-583.
Meaurio E, López-Rodríguez N, Sarasua JR. Infrared spectrum of poly(L-lactide): Application to crystallinity studies. Macromolecules 2006;39:9291-9301.
Kang S, Hsu SL, Stidham HD, Smith PB, Leugers MA, Yang X. A spectroscopic analysis of poly(lactic acid) structure. Macromolecules 2001;34:4542-4548.
Kister G, Cassanas G, Vert M, Pauvert B, Térol A. Vibrational analysis of poly(L-lactic acid). J Raman Spectrosc 1995;26:307-311.
Garlotta DA. Literature review of poly (lactic acid). J Polym Environ 2002;9:63-84.
Pavelková A, Kucharczyk P, Sedlařík V. Electrospinning of biodegradable polyester urethane: Effect of polymer-solution conductivity. Mater Technol 2017;51:195-197.
Wang L, Zhang L, Yan J, et al. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int J Nanomed 2014;9:3027-3036.
Meng ZX, Xu XX, Zheng W, Zhou HM, Li L, Zheng YF, Lou X. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf B Biointerf 2011;84:97-102.
Hu J, Wei J, Liu W, Chen Y. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a drug delivery system by emulsion electrospinning. J Biomater Sci Polym Ed 2013;24:972-985.
Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 2015;11:1165-1188.
Deitzel JM, Kleinmeyer JD, Hirvonen JK, et al. Controlled deposition of electrospun poly(ethylene oxide). Polymer 2001;42:8163-8170.
Pitt GG, Gratzl MM, Kimmel GL, Surles J, Sohindler A. Aliphatic polyesters II. The degradation of poly (D,L-lactide), poly (ε-caprolactone), and their copolymers in vivo. Biomaterials 1981;2:215-220.
Simha R. Kinetics of degradation and size distribution of long chain polymers. J Appl Phys 1941;12:569-578.
Vohlídal J. Determination of the rate-constant of random degradation from the time dependence of weight average and Z-average degrees of polymerization. Macromol Rapid Commun 1994;15:765-769.
Sun Q, Dai Z, Meng X, Xiao FS. Porous polymer catalysts with hierarchical structures. Chem Soc Rev 2015;44:6018-6034.
Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997;388:860-862.
Grizzi I, Garreau H, Li S, Vert M. Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 1995;16:305-311.
Vert M. Degradation of polymeric systems aimed at temporary therapeutic applications: Structure-related complications. e-Polymers 2005;5:2197-4586.
Elsawy MA, Kim K-H, Park J-W, Deep A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 2017;79:1346-1352.
Palangetic L, Reddy NK, Srinivasan S, Cohen RE, McKinley GH, Clasen C. Dispersity and spinnability: Why highly polydisperse polymer solutions are desirable for electrospinning. Polymer 2014;55:4920-4931.