Lycopene β-cyclase expression influences plant physiology, development, and metabolism in tobacco plants
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33484250
PubMed Central
PMC8006556
DOI
10.1093/jxb/erab029
PII: 6116658
Knihovny.cz E-zdroje
- Klíčová slova
- Nicotiana tabacum cv. Petit Havana, RNAi, biomass, carotenoids, lycopene β-cyclase, photosynthesis, phytohormones, transplastomic, β-Carotene,
- MeSH
- geneticky modifikované rostliny genetika metabolismus MeSH
- intramolekulární lyasy * genetika metabolismus MeSH
- karotenoidy MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika metabolismus MeSH
- tabák * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- intramolekulární lyasy * MeSH
- karotenoidy MeSH
- lycopene cyclase-isomerase MeSH Prohlížeč
- rostlinné proteiny MeSH
Carotenoids are important isoprenoids produced in the plastids of photosynthetic organisms that play key roles in photoprotection and antioxidative processes. β-Carotene is generated from lycopene by lycopene β-cyclase (LCYB). Previously, we demonstrated that the introduction of the Daucus carota (carrot) DcLCYB1 gene into tobacco (cv. Xanthi) resulted in increased levels of abscisic acid (ABA) and especially gibberellins (GAs), resulting in increased plant yield. In order to understand this phenomenon prior to exporting this genetic strategy to crops, we generated tobacco (Nicotiana tabacum cv. Petit Havana) mutants that exhibited a wide range of LCYB expression. Transplastomic plants expressing DcLCYB1 at high levels showed a wild-type-like growth, even though their pigment content was increased and their leaf GA1 content was reduced. RNA interference (RNAi) NtLCYB lines showed different reductions in NtLCYB transcript abundance, correlating with reduced pigment content and plant variegation. Photosynthesis (leaf absorptance, Fv/Fm, and light-saturated capacity of linear electron transport) and plant growth were impaired. Remarkably, drastic changes in phytohormone content also occurred in the RNAi lines. However, external application of phytohormones was not sufficient to rescue these phenotypes, suggesting that altered photosynthetic efficiency might be another important factor explaining their reduced biomass. These results show that LCYB expression influences plant biomass by different mechanisms and suggests thresholds for LCYB expression levels that might be beneficial or detrimental for plant growth.
Zobrazit více v PubMed
Al-Babili S, Bouwmeester HJ. 2015. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology 66, 161–186. PubMed
Albus CA, Salinas A, Czarnecki O, Kahlau S, Rothbart M, Thiele W, Lein W, Bock R, Grimm B, Schöttler MA. 2012. LCAA, a novel factor required for magnesium protoporphyrin monomethylester cyclase accumulation and feedback control of aminolevulinic acid biosynthesis in tobacco. Plant Physiology 160, 1923–1939. PubMed PMC
Aluru MR, Bae H, Wu D, Rodermel SR. 2001. The Arabidopsis immutans mutation affects plastid differentiation and the morphogenesis of white and green sectors in variegated plants. Plant Physiology 127, 67–77. PubMed PMC
Aluru MR, Zola J, Foudree A, Rodermel SR. 2009. Chloroplast photooxidation-induced transcriptome reprogramming in Arabidopsis immutans white leaf sectors. Plant Physiology 150, 904–923. PubMed PMC
Andrade-Souza V, Costa MG, Chen CX, Gmitter Jr FG, Costa MA. 2011. Physical location of the carotenoid biosynthesis genes Psy and β-Lcy in Capsicum annuum (Solanaceae) using heterologous probes from Citrus sinensis (Rutaceae). Genetics and Molecular Research 10, 404–409. PubMed
Apel W, Bock R. 2009. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiology 151, 59–66. PubMed PMC
Armarego-Marriott T, Kowalewska Ł, Burgos A, et al. . 2019. Highly resolved systems biology to dissect the etioplast-to-chloroplast transition in tobacco leaves. Plant Physiology 180, 654–681. PubMed PMC
Austin JR 2nd, Staehelin LA. 2011. Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiology 155, 1601–1611. PubMed PMC
Avendaño-Vázquez AO, Cordoba E, Llamas E, et al. . 2014. An uncharacterized apocarotenoid-derived signal generated in ζ-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. The Plant Cell 26, 2524–2537. PubMed PMC
Baroli I, Gutman BL, Ledford HK, Shin JW, Chin BL, Havaux M, Niyogi KK. 2004. Photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas. The Journal of Biological Chemistry 279, 6337–6344. PubMed
Biemelt S, Tschiersch H, Sonnewald U. 2004. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology 135, 254–265. PubMed PMC
Bock R. 2001. Transgenic plastids in basic research and plant biotechnology. Journal of Molecular Biology 312, 425–438. PubMed
Bock R. 2007. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Current Opinion in Biotechnology 18, 100–106. PubMed
Bouvier F, Rahier A, Camara B. 2005. Biogenesis, molecular regulation and function of plant isoprenoids. Progress in Lipid Research 44, 357–429. PubMed
Brewer PB, Koltai H, Beveridge CA. 2013. Diverse roles of strigolactones in plant development. Molecular Plant 6, 18–28. PubMed
Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P. 2013. Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. The Plant Journal 73, 897–909. PubMed
Carretero-Paulet L, Cairó A, Botella-Pavía P, Besumbes O, Campos N, Boronat A, Rodríguez-Concepción M. 2006. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Molecular Biology 62, 683–695. PubMed
Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall’Osto L. 2012. The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection. Plant Physiology 159, 1745–1758. PubMed PMC
Cazzonelli CI, Pogson BJ. 2010. Source to sink: regulation of carotenoid biosynthesis in plants. Trends in Plant Science 15, 266–274. PubMed
Chen X, Han H, Jiang P, Nie L, Bao H, Fan P, Lv S, Feng J, Li Y. 2011. Transformation of beta-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco. Plant & Cell Physiology 52, 909–921. PubMed
Clarke JL, Daniell H. 2011. Plastid biotechnology for crop production: present status and future perspectives. Plant Molecular Biology 76, 211–220. PubMed PMC
Coles JP, Phillips AL, Croker SJ, García-Lepe R, Lewis MJ, Hedden P. 1999. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. The Plant Journal 17, 547–556. PubMed
Cuadros-Inostroza A, Caldana C, Redestig H, Kusano M, Lisec J, Peña-Cortés H, Willmitzer L, Hannah MA. 2009. TargetSearch—a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics 10, 428. PubMed PMC
Cunningham FX, Gantt E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 49, 557–583. PubMed
Dall’Osto L, Bassi R, Ruban A. 2014. Photoprotective mechanisms: carotenoids. Plastid Biology 5, 393–435.
Dall’Osto L, Caffarri S, Bassi R. 2005. A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. The Plant Cell 17, 1217–1232. PubMed PMC
Dall’Osto L, Cazzaniga S, North H, Marion-Poll A, Bassi R. 2007a. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. The Plant Cell 19, 1048–1064. PubMed PMC
Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R. 2007b. Different roles of α- and β-branch xanthophylls in photosystem assembly and photoprotection. The Journal of Biological Chemistry 282, 35056–35068. PubMed
Dall’Osto L, Piques M, Ronzani M, Molesini B, Alboresi A, Cazzaniga S, Bassi R. 2013. The Arabidopsis nox mutant lacking carotene hydroxylase activity reveals a critical role for xanthophylls in photosystem I biogenesis. The Plant Cell 25, 591–608. PubMed PMC
D’Ambrosio C, Giorio G, Marino I, Merendino A, Petrozza A, Salfi L, Stigliani AL, Cellini F. 2004. Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Science 166, 207–214.
Davière JM, Achard P. 2013. Gibberellin signaling in plants. Development 140, 1147–1151. PubMed
Davison PA, Hunter CN, Horton P. 2002. Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418, 203–206. PubMed
Demmig-Adams B, Gilmore AM, Adams WW 3rd. 1996. Carotenoids 3: In vivo function of carotenoids in higher plants. FASEB Journal 10, 403–412. PubMed
Dickinson AJ, Lehner K, Mi J, Jia KP, Mijar M, Dinneny J, Al-Babili S, Benfey PN. 2019. β-Cyclocitral is a conserved root growth regulator. Proceedings of the National Academy of Sciences, USA 116, 10563–10567. PubMed PMC
Doyle JJ, Doyle JL. 1990. A rapid total DNA preparation procedure for fresh plant tissue. Focus 12, 13–15.
Elghabi Z, Karcher D, Zhou F, Ruf S, Bock R. 2011. Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome. Plant Biotechnology Journal 9, 599–608. PubMed
Fang J, Chai C, Qian Q, et al. . 2008. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. The Plant Journal 54, 177–189. PubMed PMC
Fernández-San Millán A, Aranjuelo I, Douthe C, Nadal M, Ancín M, Larraya L, Farran I, Flexas J, Veramendi J. 2018. Physiological performance of transplastomic tobacco plants overexpressing aquaporin AQP1 in chloroplast membranes. Journal of Experimental Botany 69, 3661–3673. PubMed PMC
Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, Carroll AJ, Saito K, Fraser PD, DeLuca V. 2011. Recommendations for reporting metabolite data. The Plant Cell 23, 2477–2482. PubMed PMC
Fiore A, Dall’Osto L, Cazzaniga S, Diretto G, Giuliano G, Bassi R. 2012. A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio. BMC Plant Biology 12, 50. PubMed PMC
Formaggio E, Cinque G, Bassi R. 2001. Functional architecture of the major light-harvesting complex from higher plants. Journal of Molecular Biology 314, 1157–1166. PubMed
Frank HA, Cogdell RJ. 1993. Photochemistry and functions of carotenoids. In: Young A, Britton G, eds. Carotenoids in photosynthesis. Dordrecht: Springer, 252–326.
Frank HA, Cogdell RJ. 1996. Carotenoids in photosynthesis. Photochemistry and Photobiology 63, 257–264. PubMed
Krause GH, Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42, 313–349.
Gallego-Giraldo L, Ubeda-Tomás S, Gisbert C, García-Martínez JL, Moritz T, López-Díaz I. 2008. Gibberellin homeostasis in tobacco is regulated by gibberellin metabolism genes with different gibberellin sensitivity. Plant & Cell Physiology 49, 679–690. PubMed
Garciarrubio A, Legaria JP, Covarrubias AA. 1997. Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta 203, 182–187. PubMed
Giavalisco P, Li Y, Matthes A, Eckhardt A, Hubberten HM, Hesse H, Segu S, Hummel J, Köhl K, Willmitzer L. 2011. Elemental formula annotation of polar and lipophilic metabolites using 13C, 15N and 34S isotope labelling, in combination with high-resolution mass spectrometry. The Plant Journal 68, 364–376. PubMed
Giuliano G, Al-Babili S, von Lintig J. 2003. Carotenoid oxygenases: cleave it or leave it. Trends in Plant Science 8, 145–149. PubMed
Götz T, Sandmann G, Römer S. 2002. Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco. Plant Molecular Biology 50, 129–142. PubMed
Green BR, Durnford DG. 1996. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 47, 685–714. PubMed
Gruszecki WI, Strzałka K. 2005. Carotenoids as modulators of lipid membrane physical properties. Biochimica et Biophysica Acta 1740, 108–115. PubMed
Gupta R, Chakrabarty SK. 2013. Gibberellic acid in plant: still a mystery unresolved. Plant Signaling and Behaviour 8, e25504. PubMed PMC
Han H, Li Y, Zhou S. 2008. Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis. Biotechnology Letters 30, 1501–1507. PubMed
Havaux M. 1998. Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science 3, 147–151.
Havaux M, Dall’osto L, Bassi R. 2007. Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiology 145, 1506–1520. PubMed PMC
Havaux M, Dall’Osto L, Cuiné S, Giuliano G, Bassi R. 2004. The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. The Journal of Biological Chemistry 279, 13878–13888. PubMed
Havaux M, Niyogi KK. 1999. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proceedings of the National Academy of Sciences, USA 96, 8762–8767. PubMed PMC
Hedden P, Thomas SG. 2012. Gibberellin biosynthesis and its regulation. The Biochemical Journal 444, 11–25. PubMed
Hirschberg J. 2001. Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology 4, 210–218. PubMed
Ji J, Wang G, Wang J, Wang P. 2009. Functional analysis of multiple carotenogenic genes from Lycium barbarum and Gentiana lutea L. for their effects on β-carotene production in transgenic tobacco. Biotechnology Letters 31, 305–312. PubMed
Just BJ, Santos CA, Fonseca ME, Boiteux LS, Oloizia BB, Simon PW. 2007. Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theoretical and Applied Genetics 114, 693–704. PubMed
Just BJ, Santos CA, Yandell BS, Simon PW. 2009. Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticated × wild carrot cross. Theoretical and Applied Genetics 119, 1155–1169. PubMed
Kang C, Zhai H, Xue L, Zhao N, He S, Liu Q. 2018. A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Science 272, 243–254. PubMed
Kassambara A. 2018. ggpubr: ‘ggplot2’ based publication ready plots: R package version 0.2. https://rpkgs.datanovia.com/ggpubr/
Kirchsteiger K, Ferrández J, Pascual MB, González M, Cejudo FJ. 2012. NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. The Plant Cell 24, 1534–1548. PubMed PMC
Kolde R. 2019. pheatmap: Pretty Heatmaps. R package version 1.0.12. https://CRAN.R-project.org/package=pheatmap
Kramer DM, Johnson G, Kiirats O, Edwards GE. 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research 79, 209. PubMed
Krinsky NI. 1989. Antioxidant functions of carotenoids. Free Radical Biology & Medicine 7, 617–635. PubMed
Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857–861. PubMed
Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC. 2012. Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metabolic Engineering 14, 19–28. PubMed PMC
Kuroda H, Maliga P. 2001. Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Research 29, 970–975. PubMed PMC
Li D, Heiling S, Baldwin IT, Gaquerel E. 2016. Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory. Proceedings of the National Academy of Sciences, USA 113, E7610–E7618. PubMed PMC
Li Z, Ahn TK, Avenson TJ, Ballottari M, Cruz JA, Kramer DM, Bassi R, Fleming GR, Keasling JD, Niyogi KK. 2009. Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. The Plant Cell 21, 1798–1812. PubMed PMC
Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. 2006. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols 1, 387–396. PubMed
Llorente B, Torres-Montilla S, Morelli L, et al. . 2020. Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development. Proceedings of the National Academy of Sciences, USA 117, 21796–21803. PubMed PMC
Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R. 2013. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proceedings of the National Academy of Sciences, USA 110, E623–E632. PubMed PMC
Lu Y, Stegemann S, Agrawal S, Karcher D, Ruf S, Bock R. 2017. Horizontal transfer of a synthetic metabolic pathway between plant species. Current Biology 27, 3034–3041.e3. PubMed
Ma XW, Ma FW, Mi YF, Ma YH, Shu HR. 2008. Morphological and physiological responses of two contrasting Malus species to exogenous abscisic acid application. Plant Growth Regulation 56, 77–87.
Mhamdi A, Van Breusegem F. 2018. Reactive oxygen species in plant development. Development 145, dev164376. PubMed
Mi J, Jia KP, Wang JY, Al-Babili S. 2018. A rapid LC-MS method for qualitative and quantitative profiling of plant apocarotenoids. Analytica Chimica Acta 1035, 87–95. PubMed
Moreno JC, Cerda A, Simpson K, Lopez-Diaz I, Carrera E, Handford M, Stange C. 2016. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression. Journal of Experimental Botany 67, 2325–2338. PubMed PMC
Moreno JC, Mi J, Agrawal S, Kössler S, Turečková V, Tarkowská D, Thiele W, Al-Babili S, Bock R, Schöttler MA. 2020. Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. The Plant Journal 103, 1967–1984. PubMed
Moreno JC, Pizarro L, Fuentes P, Handford M, Cifuentes V, Stange C. 2013. Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota. PLoS One 8, e58144. PubMed PMC
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497.
Nagel OW, Konings H, Lambers H. 1994. Growth-rate, plant development and water relations of the ABA-deficient tomato mutant sitiens. Physiologia Plantarum 92, 102–108.
Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56, 165–185. PubMed
Nitsch L, Kohlen W, Oplaat C, et al. . 2012. ABA-deficiency results in reduced plant and fruit size in tomato. Journal of Plant Physiology 169, 878–883. PubMed
Niyogi KK. 2000. Safety valves for photosynthesis. Current Opinion in Plant Biology 3, 455–460. PubMed
Niyogi KK, Grossman AR, Björkman O. 1998. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. The Plant Cell 10, 1121–1134. PubMed PMC
Oey M, Lohse M, Kreikemeyer B, Bock R. 2009. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. The Plant Journal 57, 436–445. PubMed
Olson JA. 1996. Benefits and liabilities of vitamin A and carotenoids. The Journal of Nutrition 126, 1208S–1212S. PubMed
Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V. 2005. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132, 603–614. PubMed
Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ. 2002. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. The Plant Cell 14, 321–332. PubMed PMC
Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45. PubMed PMC
Pogson BJ, Niyogi KK, Björkman O, DellaPenna D. 1998. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proceedings of the National Academy of Sciences, USA 95, 13324–13329. PubMed PMC
Porra RJ, Thompson WA, Kriedemann PE. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochimica and Biophysica Acta 975, 384–394.
Pulido P, Perello C, Rodriguez-Concepcion M. 2012. New insights into plant isoprenoid metabolism. Molecular Plant 5, 964–967. PubMed
Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ. 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research 17, 471–482. PubMed
Ralley L, Schuch W, Fraser PD, Bramley PM. 2016. Genetic modification of tomato with the tobacco lycopene β-cyclase gene produces high β-carotene and lycopene fruit. Zeitschrift für Naturforschung 71, 295–301. PubMed
R Core Team . 2018. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rittenberg D, Foster GL. 1940. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. The Journal of Biological Chemistry 737–744.
Rosahl S, Schell J, Willmitzer L. 1987. Expression of a tuber-specific storage protein in transgenic tobacco plants: demonstration of an esterase activity. The EMBO Journal 6, 1155–1159. PubMed PMC
Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G. 2000. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. The Plant Journal 24, 413–419. PubMed
Ruf S, Bock R. 2011. In vivo analysis of RNA editing in plastids. Methods in Molecular Biology 718, 137–150. PubMed
Ruf S, Hermann M, Berger IJ, Carrer H, Bock R. 2001. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnology 19, 870–875. PubMed
Ruf S, Karcher D, Bock R. 2007. Determining the transgene containment level provided by chloroplast transformation. Proceedings of the National Academy of Sciences, USA 104, 6998–7002. PubMed PMC
Ruiz-Sola MÁ, Rodríguez-Concepción M. 2012. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis Book 10, e0158. PubMed PMC
Salem MA, Jüppner J, Bajdzienko K, Giavalisco P. 2016. Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods 12, 45. PubMed PMC
Schmidt GW, Delaney SK. 2010. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics 283, 233–241. PubMed
Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM. 2003. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. The Plant Cell 15, 151–163. PubMed PMC
Schreiber U, Klughammer C. 2016. Analysis of photosystem I donor and acceptor sides with a new type of online-deconvoluting kinetic LED-array spectrophotometer. Plant & Cell Physiology 57, 1454–1467. PubMed
Schuetz RD, Baldwin RA. 1958. The synthesis and properties of some substituted phenyl ω-(N,N-dialkylamino)-alkyl sulfides. Journal of the American Chemical Society 80, 162–164.
Shi Y, Guo J, Zhang W, et al. . 2015. Cloning of the lycopene β-cyclase gene in Nicotiana tabacum and its overexpression confers salt and drought tolerance. International Journal of Molecular Sciences 16, 30438–30457. PubMed PMC
Svab Z, Maliga P. 1991. Mutation proximal to the transfer-RNA binding region of the Nicotiana plastid 16S ribosomal-RNA confers resistance to spectinomycin. Molecular & General Genetics 228, 316–319. PubMed
Svab Z, Maliga P. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proceedings of the National Academy of Sciences, USA 90, 913–917. PubMed PMC
Tao L, Picataggio S, Rouvière PE, Cheng Q. 2004. Asymmetrically acting lycopene β-cyclases (CrtLm) from non-photosynthetic bacteria. Molecular Genetics and Genomics 271, 180–188. PubMed
Tata SK, Jung J, Kim YH, Choi JY, Jung JY, Lee IJ, Shin JS, Ryu SB. 2016. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. Plant Biotechnology Journal 14, 29–39. PubMed PMC
Taylor I, Sonneveld T, Bugg TH, Thompson A. 2005. Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. Journal of Plant Growth Regulation 24, 253–273.
Tureckova V, Novak O, Strnad M. 2009. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta 80, 390–399. PubMed
Urbanova T, Tarkowska D, Novak O, Hedden P, Strnad M. 2013. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta 112, 85–94. PubMed
Vidal AM, Gisbert C, Talón M, Primo-Millo E, López-Díaz I, García-Martínez JL. 2001. The ectopic overexpression of a citrus gibberellin 20-oxidase enhances the non-13-hydroxylation pathway of gibberellin biosynthesis and induces an extremely elongated phenotype in tobacco. Physiologia Plantarum 112, 251–260. PubMed
Voorend W, Nelissen H, Vanholme R, De Vliegher A, Van Breusegem F, Boerjan W, Roldán-Ruiz I, Muylle H, Inzé D. 2016. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnology Journal 14, 997–1007. PubMed PMC
Wang JY, Haider I, Jamil M, et al. . 2019. The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nature Communications 10, 810. PubMed PMC
Welsch R, Beyer P, Hugueney P, Kleinig H, von Lintig J. 2000. Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 211, 846–854. PubMed
Weng JK, Ye M, Li B, Noel JP. 2016. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166, 881–893. PubMed
Wurbs D, Ruf S, Bock R. 2007. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. The Plant Journal 49, 276–288. PubMed
Yu X, Pasternak T, Eiblmeier M, et al. . 2013. Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. The Plant Cell 25, 4451–4468. PubMed PMC
Zhao X, Hu K, Yan M, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J. 2020. Disruption of carotene biosynthesis leads to abnormal plastids and variegated leaves in Brassica napus. Molecular Genetics and Genomics 295, 981–999. PubMed PMC
Zhu K, Zheng X, Ye J, Jiang Q, Chen H, Mei X, Wurtzel ET, Deng X. 2020. Building the synthetic biology toolbox with enzyme variants to expand opportunities for biofortification of provitamin A and other health-promoting carotenoids. Journal of Agricultural and Food Chemistry 68, 12048–12057. PubMed