Wing wettability gradient in a damselfly Lestes sponsa (Odonata: Lestidae) reflects the submergence behaviour during underwater oviposition

. 2020 Dec ; 7 (12) : 201258. [epub] 20201216

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33489275

The phenomenon of hydrophobicity of insect cuticles has received great attention from technical fields due to its wide applicability to industry or medicine. However, in an ecological/evolutionary context such studies remain scarce. We measured spatial differences in wing wettability in Lestes sponsa (Odonata: Lestidae), a damselfly species that can submerge during oviposition, and discussed the possible functional significance. Using dynamic contact angle (CA) measurements together with scanning electron microscopy (SEM), we investigated differences in wettability among distal, middle and proximal wing regions, and in surface nanostructures potentially responsible for observed differences. As we moved from distal towards more proximal parts, mean values of advancing and receding CAs gradually increased from 104° to 149°, and from 67° to 123°, respectively, indicating that wing tips were significantly less hydrophobic than more proximal parts. Moreover, values of CA hysteresis for the respective wing parts decreased from 38° to 26°, suggesting greater instability of the structure of the wing tips. Accordingly, compared with more proximal parts, SEM revealed higher damage of the wax nanostructures at the distal region. The observed wettability gradient is well explained by the submergence behaviour of L. sponsa during underwater oviposition. Our study thus proposed the existence of species-dependent hydrophobicity gradient on odonate wings caused by different ovipositional strategies.

Zobrazit více v PubMed

Byun D, Hong J, Saputra KJ, Lee YJ, Park HC, Byun B-K, Lukes JR. 2009. Wetting characteristics of insect wing surfaces. J. Bionic Eng. 6, 63–70. (10.1016/S1672-6529(08)60092-X) DOI

Watson GS, Cribb BW, Watson JA. 2011. Contrasting micro/nano architecture on termite wings: two divergent strategies for optimising success of colonisation flights. PLoS ONE 6, e24368 (10.1371/journal.pone.0024368) PubMed DOI PMC

Wagner T, Neinhuis C, Barthlott W. 1996. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool. 77, 213–225. (10.1111/j.1463-6395.1996.tb01265.x) DOI

Sun M, Watson GS, Zheng Y, Watson JA, Liang A. 2009. Wetting properties on nanostructured surfaces of cicada wings. J. Exp. Biol. 212, 3148–3155. (10.1242/jeb.033373) PubMed DOI

Kesel AB, Philippi U, Nachtigall W. 1998. Biomechanical aspects of the insect wing: an analysis using the finite element method. Comput. Biol. Med. 28, 423–437. (10.1016/S0010-4825(98)00018-3) PubMed DOI

Holdgate MW. 1955. The wetting of insect cuticles by water. J. Exp. Biol. 32, 591–617.

Nguyen SHT, Webb HK, Hasan J, Tobin MJ, Crawford RJ, Ivanova EP. 2013. Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings. Colloids Surf. B Biointerfaces 106, 126–134. (10.1016/j.colsurfb.2013.01.042) PubMed DOI

Webb HK, Crawford RJ, Ivanova EP. 2014. Wettability of natural superhydrophobic surfaces. Adv. Colloid Interface Sci. 210, 58–64. (10.1016/j.cis.2014.01.020) PubMed DOI

Gorb SN, Kesel A, Berger J. 2000. Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering. Arthropod Struct. Dev. 29, 129–135. (10.1016/S1467-8039(00)00020-7) PubMed DOI

Hirayama H, Kasuya E. 2008. Factors affecting submerged oviposition in a water strider: level of dissolved oxygen and male presence. Anim. Behav. 76, 1919–1926. (10.1016/j.anbehav.2008.08.013) DOI

Watson GS, Cribb BW, Watson JA. 2010. How micro/nanoarchitectures facilitates anti-wetting: an elegant hierarchical design on the termite wing. ACS Nano 4, 129–136. (10.1021/nn900869b) PubMed DOI

Sun M, Liang A, Watson GS, Watson JA, Zheng Y, Ju J, Jiang L. 2012. Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings. PLoS ONE 7, e35056 (10.1371/journal.pone.0035056) PubMed DOI PMC

Tobin MJ, et al. 2015. Fourier transform infrared spectroscopy and imaging of dragonfly, damselfly and cicada wing membranes. Spectrosc. Eur. 27, 15.

Oh J, et al. 2017. Exploring the role of habitat on the wettability of cicada wings. ACS Appl. Mater. Interfaces 9, 27 173–27 184. (10.1021/acsami.7b07060) PubMed DOI

Sun J, Bhushan B. 2012. The structure and mechanical properties of dragonfly wings and their role on flyability. Comptes Rendus Mécanique 340, 3–17. (10.1016/j.crme.2011.11.003) DOI

Ivanova EP, et al. 2013. Molecular organization of the nanoscale surface structures of the dragonfly Hemianax papuensis wing epicuticle. PLoS ONE 8, e67893 (10.1371/journal.pone.0067893) PubMed DOI PMC

Darmanin T, Guittard F. 2015. Superhydrophobic and superoleophobic properties in nature. Mater. Today 18, 273–285. (10.1016/j.mattod.2015.01.001) DOI

Oh J, et al. 2019. Cicada-inspired self-cleaning superhydrophobic surfaces. J. Heat Transf. 141, 100905 (10.1115/1.4044677) DOI

Quéré D, Lafuma A, Bico J. 2003. Slippy and sticky microtextured solids. Nanotechnology 14, 1109–1112. (10.1088/0957-4484/14/10/307) DOI

Bhushan B, Jung YC, Koch K. 2009. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Phil. Trans. R. Soc. A 367, 1631–1672. (10.1098/rsta.2009.0014) PubMed DOI

Shirtcliffe NJ, McHale G, Atherton S, Newton MI. 2010. An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 161, 124–138. (10.1016/j.cis.2009.11.001) PubMed DOI

Ivanova EP, et al. 2012. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8, 2489–2494. (10.1002/smll.201200528) PubMed DOI

Bandara CD, Singh S, Afara IO, Wolff A, Tesfamichael T, Ostrikov K, Oloyede A. 2017. Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces 9, 6746–6760. (10.1021/acsami.6b13666) PubMed DOI

McHale G, Shirtcliffe NJ, Newton MI. 2004. Super-hydrophobic and super-wetting surfaces: analytical potential? Analyst 129, 284–287. (10.1039/b400567h) DOI

Marmur A. 2004. The Lotus effect: superhydrophobicity and metastability. Langmuir 20, 3517–3519. (10.1021/la036369u) PubMed DOI

Watson GS, Myhra S, Cribb BW, Watson JA. 2008. Putative functions and functional efficiency of ordered cuticular nanoarrays on insect wings. Biophys. J. 94, 3352–3360. (10.1529/biophysj.107.109348) PubMed DOI PMC

Watson GS, Cribb BW, Watson JA. 2010. The role of micro/nano channel structuring in repelling water on cuticle arrays of the lacewing. J. Struct. Biol. 171, 44–51. (10.1016/j.jsb.2010.03.008) PubMed DOI

Román-Kustas J, et al. 2020. Molecular and topographical organization: influence on cicada wing wettability and bactericidal properties. Adv. Mater. Interfaces 7, 2000112 (10.1002/admi.202000112) DOI

Hasan J, et al. 2012. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings. Langmuir 28, 17 404–17 409. (10.1021/la303560w) PubMed DOI

Nguyen SH, Webb HK, Hasan J, Tobin MJ, Mainwaring DE, Mahon PJ, Marchant R, Crawford RJ, Ivanova EP. 2014. Wing wettability of Odonata species as a function of quantity of epicuticular waxes. Vib. Spectrosc. 75, 173–177. (10.1016/j.vibspec.2014.07.006) DOI

Román-Kustas J, et al. 2020. Analysis of cicada wing surface constituents by comprehensive multidimensional gas chromatography for species differentiation. Microchem. J. 158, 105089 (10.1016/j.microc.2020.105089) DOI

Gorb SN, Tynkkynen K, Kotiaho JS. 2009. Crystalline wax coverage of the imaginal cuticle in Calopteryx splendens (Odonata: Calopterygidae). Int. J. Odonatol. 12, 205–221. (10.1080/13887890.2009.9748340) DOI

Tsubaki Y, Kato C, Shintani S. 2006. On the respiratory mechanism during underwater oviposition in a damselfly Calopteryx cornelia Selys. J. Insect Physiol. 52, 499–505. (10.1016/j.jinsphys.2006.01.009) PubMed DOI

Wan Y, Cong Q, Wang X, Yan Z. 2008. The wettability and mechanism of geometric non-smooth structure of dragonfly wing surface. J. Bionic Eng. 5, 40–45. (10.1016/S1672-6529(08)60070-0) DOI

Gao C-Y, Meng G-X, Li X, Wu M, Liu Y, Li X-Y, Zhao X, Lee I, Feng X. 2013. Wettability of dragonfly wings: the structure detection and theoretical modeling: wettability, modeling, and simulation of dragonfly wings. Surf. Interface Anal. 45, 650–655. (10.1002/sia.5105) DOI

Kuitunen K, Kovalev A, Gorb SN. 2014. Sex-related effects in the superhydrophobic properties of damselfly wings in young and old Calopteryx splendens. PLoS ONE 9, e88627 (10.1371/journal.pone.0088627) PubMed DOI PMC

Corbet PS. 1999. Dragonflies: behavior and ecology of Odonata. Colchester, UK: Harley Books.

Flynn MR, Bush JWM. 2008. Underwater breathing: the mechanics of plastron respiration. J. Fluid Mech. 608, 275–296. (10.1017/S0022112008002048) DOI

Aideo SN, Mohanta D. 2016. Limiting hydrophobic behavior and reflectance response of dragonfly and damselfly wings. Appl. Surf. Sci. 387, 609–616. (10.1016/j.apsusc.2016.06.049) DOI

Song F, Xiao KW, Bai K, Bai YL. 2007. Microstructure and nanomechanical properties of the wing membrane of dragonfly. Mater. Sci. Eng. A 457, 254–260. (10.1016/j.msea.2007.01.136) DOI

Nguyen S, Webb H, Mahon P, Crawford R, Ivanova E. 2014. Natural insect and plant micro-/nanostructsured surfaces: an excellent selection of valuable templates with superhydrophobic and self-cleaning properties. Molecules 19, 13 614–13 630. (10.3390/molecules190913614) PubMed DOI PMC

Kalkman VJ, et al. 2010. European red list of dragonflies. Luxembourg: Publications Office of the European Union.

Dolný A, Helebrandová J, Rusková T, Šigut M, Harabiš F. 2014. Ecological aspects of underwater oviposition in Lestes sponsa (Odonata: Lestidae). Odonatologica 43, 183–197.

Helebrandová J, Pyszko P, Dolný A. 2018. Large net cage for captive breeding and behavioural studies of damselfly Lestes sponsa (Hansemann, 1823) (Odonata: Lestidae): submerged oviposition as a model behaviour. Aquat. Insects 39, 43–53. (10.1080/01650424.2018.1432059) DOI

Stoks R, De Bruyn L, Matthysen E. 1997. The adaptiveness of intense contact mate guarding by males of the emerald damselfly, Lestes sponsa (Odonata, Lestidae): the male's perspective. J. Insect Behav. 10, 289–298. (10.1007/BF02765561) DOI

Johnson RE, Dettre RH. 1969. Wetting and contact angle. Surf. Colloid Sci. 2, 85–153.

Johnson RE, Dettre RH, Brandreth DA. 1977. Dynamic contact angles and contact angle hysteresis. J. Colloid Interface Sci. 62, 205–212. (10.1016/0021-9797(77)90114-X) DOI

Bhushan B, Jung YC. 2008. Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces. J. Phys. Condens. Matter 20, 225010 (10.1088/0953-8984/20/22/225010) DOI

The MathWorks. 2015. MATLAB 2015a. Natick, MA: The MathWorks, Inc.

Outomuro D, Johansson F. 2019. Wing morphology and migration status, but not body size, habitat or Rapoport's rule predict range size in North-American dragonflies (Odonata: Libellulidae). Ecography 42, 309–320. (10.1111/ecog.03757) DOI

R Development Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing; See https://www.r-project.org/.

Yan J. 2002. Geepack: yet another package for generalized estimating equations. R-News 2, 12–14.

Halekoh U, Højsgaard S, Yan J. 2006. The R package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11. (10.18637/jss.v015.i02) DOI

Lenth RV. 2016. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33. (10.18637/jss.v069.i01) DOI

Koch K, Barthlott W. 2009. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil. Trans. R. Soc. A 367, 1487–1509. (10.1098/rsta.2009.0022) PubMed DOI

Webb HK, Hasan J, Truong VK, Crawford RJ, Ivanova EP. 2011. Nature inspired structured surfaces for biomedical applications. Curr. Med. Chem. 18, 3367–3375. (10.2174/092986711796504673) PubMed DOI

Su Y, Ji B, Zhang K, Gao H, Huang Y, Hwang K. 2010. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces. Langmuir 26, 4984–4989. (10.1021/la9036452) PubMed DOI

Crawford R, Koopal LK, Ralston J. 1987. Contact angles on particles and plates. Colloids Surf. 27, 57–64. (10.1016/0166-6622(87)80133-6) DOI

Van Oss CJ, Good RJ, Chaudhury MK. 1988. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4, 884–891. (10.1021/la00082a018) DOI

Lander LM, Siewierski LM, Brittain WJ, Vogler EA. 1993. A systematic comparison of contact angle methods. Langmuir 9, 2237–2239. (10.1021/la00032a055) DOI

Marmur A. 1994. Thermodynamic aspects of contact angle hysteresis. Adv. Colloid Interface Sci. 50, 121–141. (10.1016/0001-8686(94)80028-6) DOI

Gao L, McCarthy TJ. 2006. Contact angle hysteresis explained. Langmuir 22, 6234–6237. (10.1021/la060254j) PubMed DOI

Cheng Y-T, Rodak DE. 2005. Is the lotus leaf superhydrophobic? Appl. Phys. Lett. 86, 144101 (10.1063/1.1895487) DOI

Zhang J, Sheng X, Jiang L. 2009. The dewetting properties of lotus leaves. Langmuir 25, 1371–1376. (10.1021/la8024233) PubMed DOI

Bobji MS, Kumar SV, Asthana A, Govardhan RN. 2009. Underwater sustainability of the ‘Cassie’ state of wetting. Langmuir 25, 12 120–12 126. (10.1021/la902679c) PubMed DOI

Cassie ABD. 1948. Contact angles. Discuss. Faraday Soc. 3, 11–16. (10.1039/DF9480300011) DOI

Wenzel RN. 1949. Surface roughness and contact angle. J. Phys. Colloid Chem. 53, 1466–1467. (10.1021/j150474a015) DOI

Erbil HY, Cansoy CE. 2009. Range of applicability of the Wenzel and Cassie–Baxter equations for superhydrophobic surfaces. Langmuir 25, 14 135–14 145. (10.1021/la902098a) PubMed DOI

Patankar NA. 2004. Transition between superhydrophobic sates on rough surfaces. Langmuir 20, 7097–7102. (10.1021/la049329e) PubMed DOI

Marmur A. 2006. Underwater superhydrophobicity: theoretical feasibility. Langmuir 22, 1400–1402. (10.1021/la052802j) PubMed DOI

Bormashenko E. 2010. Wetting transitions on biomimetic surfaces. Phil. Trans. R. Soc. A 368, 4695–4711. (10.1098/rsta.2010.0121) PubMed DOI

McHale G, Shirtcliffe NJ, Newton MI. 2004. Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20, 10 146–10 149. (10.1021/la0486584) PubMed DOI

Reyssat M, Quéré D. 2009. Contact angle hysteresis generated by strong dilute defects. J. Phys. Chem. B 113, 3906–3909. (10.1021/jp8066876) PubMed DOI

Fincke OM. 1986. Underwater oviposition in a damselfly (Odonata, Coenagrionidae) favors male vigilance and multiple mating by females. Behav. Ecol. Sociobiol. 18, 405–412. (10.1007/BF00300514) DOI

Spence JR. 1986. Interactions between the scelionid egg parasitoid Tiphodytes gerriphagus (Hymenoptera) and its gerrid hosts (Heteroptera). Can. J. Zool. 64, 2728–2738. (10.1139/z86-397) DOI

Miller PL. 1994. The effect of oxygen lack on egg hatching in an Indian dragonfly, Potamarcha congener. Physiol. Entomol. 17, 68–72. (10.1111/j.1365-3032.1992.tb00991.x) DOI

Harabiš F, Dolný A, Helebrandová J, Rusková T. 2015. Do egg parasitoids increase the tendency of Lestes sponsa (Odonata: Lestidae) to oviposit underwater? Eur. J. Entomol. 112, 63–68. (10.14411/eje.2015.017) DOI

Robert PA. 1958. Les libellules (Odonates). Neuchâtel, France: Delachaux et Niestlé.

Helebrandová JB, Pyszko P, Dolný A. 2019. Behavioural phenotypic plasticity of submerged oviposition in damselflies (Insecta: Odonata). Insects 10, 124 (10.3390/insects10050124) PubMed DOI PMC

Sun M, Chen Y, Zheng Y, Zhen M, Shu C, Dai Z, Liang A, Gorb SN. 2017. Wettability gradient on the elytra in the aquatic beetle Cybister chinensis and its role in angular position of the beetle at water-air interface. Acta Biomater. 51, 408–417. (10.1016/j.actbio.2017.01.022) PubMed DOI

Parker AR, Lawrence CR. 2001. Water capture by a desert beetle. Nature 414, 33–34. (10.1038/35102108) PubMed DOI

Fang Y, Sun G, Bi Y, Zhi H. 2015. Multiple-dimensional micro/nano structural models for hydrophobicity of butterfly wing surfaces and coupling mechanism. Sci. Bull. 60, 256–263. (10.1007/s11434-014-0653-3) DOI

Blossey R. 2003. Self-cleaning surfaces—virtual realities. Nat. Mater. 2, 301–306. (10.1038/nmat856) PubMed DOI

Fürstner R, Barthlott W, Neinhuis C, Walzel P. 2005. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956–961. (10.1021/la0401011) PubMed DOI

Bhushan B, Jung YC. 2011. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108. (10.1016/j.pmatsci.2010.04.003) DOI

McCauley SJ. 2007. The role of local and regional processes in structuring larval dragonfly distributions across habitat gradients. Oikos 116, 121–133. (10.1111/j.2006.0030-1299.15105.x) DOI

Norberg RÅ. 1972. The pterostigma of insect wings an inertial regulator of wing pitch. J. Comp. Physiol. 81, 9–22. (10.1007/BF00693547) DOI

Wootton RJ. 1991. The functional morphology of the wings of Odonata. Adv. Odonatol. 5, 153–169.

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5230345

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...