Oxygen Vacancies and Surface Wettability: Key Factors in Activating and Enhancing the Solar Photocatalytic Activity of ZnO Tetrapods
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences.
Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences.
PubMed
38003527
PubMed Central
PMC10671779
DOI
10.3390/ijms242216338
PII: ijms242216338
Knihovny.cz E-zdroje
- Klíčová slova
- oxygen vacancies, photocatalysis, sunlight, wettability, zinc oxide,
- MeSH
- katalýza MeSH
- kyslík * MeSH
- oxid zinečnatý * MeSH
- sluneční záření MeSH
- smáčivost MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyslík * MeSH
- oxid zinečnatý * MeSH
This paper reports on the high photocatalytic activity of ZnO tetrapods (ZnO-Ts) using visible/solar light and hydrodynamic water flow. It was shown that surface oxygen defects are a key factor in the photocatalytic activity of the ZnO-Ts. The ability to control the surface wettability of the ZnO-Ts and the associated concentration of surface defects was demonstrated. It was demonstrated that the photocatalytic activity during the MB decomposition process under direct and simulated sunlight is essentially identical. This presents excellent prospects for utilizing the material in solar photocatalysis.
Institute of Radiation Problems of Azerbaijan National Academy of Sciences AZ1143 Baku Azerbaijan
Smart Materials Laboratory Dagestan State University 367000 Makhachkala Russia
Zobrazit více v PubMed
Pan X., Yang X., Yu M., Lu X., Kang H., Yang M.-Q., Qian Q., Zhao X., Liang S., Bian Z. 2D MXenes polar catalysts for multi-renewable energy harvesting applications. Nat. Commun. 2023;14:4183. doi: 10.1038/s41467-023-39791-w. PubMed DOI PMC
Li J., Lv X., Weng B., Roeffaers M.B., Jia H. Engineering light propagation for synergetic photo- and thermocatalysis toward volatile organic compounds elimination. Chem. Eng. J. 2023;461:142022. doi: 10.1016/j.cej.2023.142022. DOI
Feng W., Lei Y., Wu X., Yuan J., Chen J., Xu D., Zhang X., Zhang S., Liu P., Zhang L., et al. Tuning the interfacial electronic structure via Au clusters for boosting photocatalytic H2 evolution. J. Mater. Chem. A. 2021;9:1759–1769. doi: 10.1039/D0TA09217G. DOI
Abdullah F.H., Bakar N.H.H.A., Bakar M.A. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. J. Hazard. Mater. 2022;424:127416. doi: 10.1016/j.jhazmat.2021.127416. PubMed DOI
Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018;81:536–551. doi: 10.1016/j.rser.2017.08.020. DOI
Meulenkamp E.A. Synthesis and Growth of ZnO Nanoparticles. J. Phys. Chem. B. 1998;102:5566–5572. doi: 10.1021/jp980730h. DOI
Gonzalez-Valls I., Lira-Cantu M. Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review. Energy Environ. Sci. 2008;2:19–34. doi: 10.1039/B811536B. DOI
Tong Y., Liu Y., Shao C., Liu Y., Xu C., Zhang J., Lu Y., Shen D., Fan X. Growth and Optical Properties of Faceted Hexagonal ZnO Nanotubes. J. Phys. Chem. B. 2006;110:14714–14718. doi: 10.1021/jp056654h. PubMed DOI
Taniguchi T., Yamaguchi K., Shigeta A., Matsuda Y., Hayami S., Shimizu T., Matsui T., Yamazaki T., Funatstu A., Makinose Y., et al. Enhanced and Engineered d0Ferromagnetism in Molecularly-Thin Zinc Oxide Nanosheets. Adv. Funct. Mater. 2013;23:3140–3145. doi: 10.1002/adfm.201202704. DOI
Qiu Y., Yang S. ZnO Nanotetrapods: Controlled Vapor-Phase Synthesis and Application for Humidity Sensing. Adv. Funct. Mater. 2007;17:1345–1352. doi: 10.1002/adfm.200601128. DOI
Janotti A., Van de Walle C.G. Native point defects in ZnO. Phys. Rev. B. 2007;76:165202. doi: 10.1103/PhysRevB.76.165202. DOI
Devynck F., Alkauskas A., Broqvist P., Pasquarello A. Charge transition levels of carbon-, oxygen-, and hydrogen-related defects at the SiC/SiO2interface through hybrid functionals. Phys. Rev. B. 2011;84:235320. doi: 10.1103/PhysRevB.84.235320. DOI
Vanheusden K., Warren W.L., Seager C.H., Tallant D.R., Voigt J.A., Gnade B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996;79:7983–7990. doi: 10.1063/1.362349. DOI
Kurtz M., Strunk J., Hinrichsen O., Muhler M., Fink K., Meyer B., Wöll C. Active Sites on Oxide Surfaces: ZnO-Catalyzed Synthesis of Methanol from CO and H2. Angew. Chem. Int. Ed. 2005;44:2790–2794. doi: 10.1002/anie.200462374. PubMed DOI
Liu K., Yao X., Jiang L. Recent developments in bio-inspired special wettability. Chem. Soc. Rev. 2010;39:3240–3255. doi: 10.1039/b917112f. PubMed DOI
Li J., Sun Q., Han S., Wang J., Wang Z., Jin C. Reversibly light-switchable wettability between superhydrophobicity and superhydrophilicity of hybrid ZnO/bamboo surfaces via alternation of UV irradiation and dark storage. Prog. Org. Coatings. 2015;87:155–160. doi: 10.1016/j.porgcoat.2015.05.028. DOI
Miyauchi M., Nakajima A., Watanabe T., Hashimoto K. Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films. Chem. Mater. 2002;14:2812–2816. doi: 10.1021/cm020076p. DOI
Watanabe T., Yoshida N. Wettability control of a solid surface by utilizing photocatalysis. Chem. Rec. 2008;8:279–290. doi: 10.1002/tcr.20154. PubMed DOI
Liu H., Feng L., Zhai J., Jiang L., Zhu D. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydro-philicity. Langmuir. 2004;20:5659–5661. doi: 10.1021/la036280o. PubMed DOI
Feng X., Feng L., Jin M., Zhai J., Jiang L., Zhu D. Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films. J. Am. Chem. Soc. 2004;126:62–63. doi: 10.1021/ja038636o. PubMed DOI
Wang L., Zhang S., Wu S., Long Y., Li L., Zheng Z., Hei Y., Zhou L., Luo L., Jiang F. Controlling wettability of AgI/BiVO4 composite photocatalyst and its effect on photocatalytic performance. J. Alloy. Compd. 2020;835:155367. doi: 10.1016/j.jallcom.2020.155367. DOI
Li H., Wang L., Pi X., Ma M., Jiang X., Ji S., Jiang F., Luo L. Effect of the wettability of Ag2MoO4/BiVO4 {010} composite on the photocatalytic degradation for 17α-ethinyl estradiol. J. Alloy. Compd. 2022;899:163295. doi: 10.1016/j.jallcom.2021.163295. DOI
Zhu H., Cai S., Liao G., Gao Z.F., Min X., Huang Y., Jin S., Xia F. Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Catal. 2021;11:14751–14771. doi: 10.1021/acscatal.1c04049. DOI
Oba F., Togo A., Tanaka I., Paier J., Kresse G. Defect energetics in ZnO: A hybrid Hartree-Fock density functional study. Phys. Rev. B. 2008;77:245202. doi: 10.1103/PhysRevB.77.245202. DOI
Zheng J., Jiang Q., Lian J. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Appl. Surf. Sci. 2011;257:5083–5087. doi: 10.1016/j.apsusc.2011.01.025. DOI
Tam K.H., Cheung C.K., Leung Y.H., Djurišić A.B., Ling C.C., Beling C.D., Fung S., Kwok W.M., Chan W.K., Phillips D.L., et al. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B. 2006;110:20865–20871. doi: 10.1021/jp063239w. PubMed DOI
Bukhtiyarov V.I., Hävecker M., Kaichev V.V., Knop-Gericke A., Mayer R.W., Schlögl R. Atomic oxygen species on silver: Photoelectron spectroscopy and X-ray absorption studies. Phys. Rev. B. 2003;67:235422. doi: 10.1103/PhysRevB.67.235422. DOI
Lee K., Sahu M., Hajra S., Abolhassani R., Mistewicz K., Toroń B., Rubahn H.-G., Mishra Y.K., Kim H.J. Zinc oxide tetrapod sponges for environmental pollutant monitoring and degradation. J. Mater. Res. Technol. 2023;22:811–824. doi: 10.1016/j.jmrt.2022.11.142. DOI
Chamoli P., Shukla R.K., Bezbaruah A.N., Kar K.K., Raina K. Microwave-assisted rapid synthesis of honeycomb core-ZnO tetrapods nanocomposites for excellent photocatalytic activity against different organic dyes. Appl. Surf. Sci. 2021;555:149663. doi: 10.1016/j.apsusc.2021.149663. DOI
Heo S.-G., Jo S.-I., Jeong G.-H. Revealing the enhanced photocatalytic properties of ZnO tetrapods produced by atmospheric-pressure microwave plasma jet system. Curr. Appl. Phys. 2023;46:46–54. doi: 10.1016/j.cap.2022.12.004. DOI
Kumar S., Kaushik R., Purohit L. Novel ZnO tetrapod-reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of phenolic compounds and MB dye. J. Mol. Liq. 2021;327:114814. doi: 10.1016/j.molliq.2020.114814. DOI
Mourya A.K., Singh R.P., Kumar T., Talmale A.S., Gaikwad G.S., Wankhade A.V. Tuning the morphologies of ZnO for enhanced photocatalytic activity. Inorg. Chem. Commun. 2023;154:110850. doi: 10.1016/j.inoche.2023.110850. DOI
Qi F., Gao X., Wang C., Shuai Y., Yang L., Liao R., Xin J., Peng S., Shuai C. In situ grown silver nanoparticles on tetrapod-like zinc oxide whisker for photocatalytic antibacterial in scaffolds. Mater. Today Sustain. 2022;19:100210. doi: 10.1016/j.mtsust.2022.100210. DOI
Guo M.Y., Ng A.M.C., Liu F., Djurišić A.B., Chan W.K., Su H., Wong K.S. Effect of Native Defects on Photocatalytic Properties of ZnO. J. Phys. Chem. C. 2011;115:11095–11101. doi: 10.1021/jp200926u. DOI
Ferreira N.S., Sasaki J.M., Silva R.S., Jr., Attah-Baah J.M., Macêdo M.A. Visible-Light-Responsive Photocatalytic Activity Significantly Enhanced by Active [VZn+VO+] Defects in Self-Assembled ZnO Nanoparticles. Inorg. Chem. 2021;60:4475–4496. doi: 10.1021/acs.inorgchem.0c03327. PubMed DOI
Park S.J., Das G.S., Schütt F., Adelung R., Mishra Y.K., Tripathi K., Kim T.M. Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: Degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Mater. 2019;11:8. doi: 10.1038/s41427-019-0107-0. DOI
Mishra Y.K., Modi G., Cretu V., Postica V., Lupan O., Reimer T., Paulowicz I., Hrkac V., Benecke W., Kienle L., et al. Direct Growth of Freestanding ZnO Tetrapod Networks for Multifunctional Applications in Photocatalysis, UV Photodetection, and Gas Sensing. ACS Appl. Mater. Interfaces. 2015;7:14303–14316. doi: 10.1021/acsami.5b02816. PubMed DOI
Ghosh A., Guha P., Samantara A.K., Jena B.K., Bar R., Ray S., Satyam P.V. Simple Growth of Faceted Au–ZnO Hetero-nanostructures on Silicon Substrates (Nanowires and Triangular Nanoflakes): A Shape and Defect Driven Enhanced Photocatalytic Performance under Visible Light. ACS Appl. Mater. Interfaces. 2015;7:9486–9496. doi: 10.1021/acsami.5b00634. PubMed DOI
Sun C., Fu Y., Wang Q., Xing L., Liu B., Xue X. Ultrafast piezo-photocatalytic degradation of organic pollutions by Ag2O/tetrapod-ZnO nanostructures under ultrasonic/UV exposure. RSC Adv. 2016;6:87446–87453. doi: 10.1039/C6RA13464E. DOI
Lv Y., Yao W., Ma X., Pan C., Zong R., Zhu Y. The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1−x photocatalyst. Catal. Sci. Technol. 2013;3:3136–3146. doi: 10.1039/c3cy00369h. DOI
Zhu H., Zhang C., Xie K., Li X., Liao G. Photocatalytic degradation of organic pollutants over MoS2/Ag-ZnFe2O4 Z-scheme heterojunction: Revealing the synergistic effects of exposed crystal facets, defect engineering, and Z-scheme mechanism. Chem. Eng. J. 2023;453:139775. doi: 10.1016/j.cej.2022.139775. DOI
Yang B., Wang Z., Zhao J., Sun X., Wang R., Liao G., Jia X. 1D/2D carbon-doped nanowire/ultra-thin nanosheet g-C3N4 isotype heterojunction for effective and durable photocatalytic H2 evolution. Int. J. Hydrogen Energy. 2021;46:25436–25447. doi: 10.1016/j.ijhydene.2021.05.066. DOI
Tan H., Zhao Z., Zhu W.-B., Coker E.N., Li B., Zheng M., Yu W., Fan H., Sun Z. Oxygen Vacancy Enhanced Photocatalytic Activity of Pervoskite SrTiO3. ACS Appl. Mater. Interfaces. 2014;6:19184–19190. doi: 10.1021/am5051907. PubMed DOI
Lv Y., Zhu Y., Zhu Y. Enhanced photocatalytic performance for the BiPO4-x nanorod induced by surface oxygen vacancy. J. Phys. Chem. C. 2013;117:18520–18528. doi: 10.1021/jp405596e. DOI
Xu X., Ding X., Yang X., Wang P., Li S., Lu Z., Chen H. Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study. J. Hazard. Mater. 2019;364:691–699. doi: 10.1016/j.jhazmat.2018.10.063. PubMed DOI
Liu J., Xie F., Li R., Li T., Jia Z., Wang Y., Wang Y., Zhang X., Fan C. TiO2-x/Ag3PO4 photocatalyst: Oxygen vacancy dependent visible light photocatalytic performance and BPA degradative pathway. Mater. Sci. Semicond. Process. 2019;97:1–10. doi: 10.1016/j.mssp.2019.03.002. DOI
Bettini S., Pagano R., Valli D., Ingrosso C., Roeffaers M., Hofkens J., Giancane G., Valli L. ZnO nanostructures based piezo-photocatalytic degradation enhancement of steroid hormones. Surfaces Interfaces. 2023;36:102581. doi: 10.1016/j.surfin.2022.102581. DOI
Xue X., Zang W., Deng P., Wang Q., Xing L., Zhang Y., Wang Z.L. Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy. 2015;13:414–422. doi: 10.1016/j.nanoen.2015.02.029. DOI
Ye Y., Wang K., Huang X., Lei R., Zhao Y., Liu P. Integration of piezoelectric effect into a Au/ZnO photocatalyst for efficient charge separation. Catal. Sci. Technol. 2019;9:3771–3778. doi: 10.1039/C9CY00920E. DOI
Chimupala Y., Phromma C., Yimklan S., Semakul N., Ruankham P. Dye wastewater treatment enabled by piezo-enhanced photocatalysis of single-component ZnO nanoparticles. RSC Adv. 2020;10:28567–28575. doi: 10.1039/D0RA04746E. PubMed DOI PMC
Yu C., Yu X.-X., Zheng D.-S., Yin H. Piezoelectric potential enhanced photocatalytic performance based on ZnO with different nanostructures. Nanotechnology. 2021;32:135703. doi: 10.1088/1361-6528/abd1ab. PubMed DOI
Kumar M., Vaish R., Elqahtani Z.M., Kebaili I., Al-Buriahi M., Sung T.H., Hwang W., Kumar A. Piezo-photocatalytic activity of Bi2VO5.5 for methylene blue dye degradation. J. Mater. Res. Technol. 2022;21:1998–2012. doi: 10.1016/j.jmrt.2022.09.130. DOI
Masekela D., Masekela D., Hintsho-Mbita N.C., Hintsho-Mbita N.C., Ntsendwana B., Ntsendwana B., Mabuba N., Mabuba N. Thin Films (FTO/BaTiO3/AgNPs) for Enhanced Piezo-Photocatalytic Degradation of Methylene Blue and Ciprofloxacin in Wastewater. ACS Omega. 2022;7:24329–24343. doi: 10.1021/acsomega.2c01699. PubMed DOI PMC
Adiba A., Waris, Munjal S., Khan M.Z., Ahmad T. Piezo-photocatalytic degradation of organic pollutant by a novel BaTiO3–NiO composite. Eur. Phys. J. Plus. 2023;138:408. doi: 10.1140/epjp/s13360-023-04029-7. DOI
Fu Y., Wang Y., Zhao H., Zhang Z., An B., Bai C., Ren Z., Wu J., Li Y., Liu W., et al. Synthesis of ternary ZnO/ZnS/MoS2 piezoelectric nanoarrays for enhanced photocatalytic performance by conversion of dual heterojunctions. Appl. Surf. Sci. 2021;556:149695. doi: 10.1016/j.apsusc.2021.149695. DOI
Kumar M., Vaish R., ben Ahmed S. Piezo-photocatalytic activity of mechanochemically synthesized BiVO4 for dye cleaning. J. Am. Ceram. Soc. 2022;105:2309–2322. doi: 10.1111/jace.18233. DOI
Hong D., Zang W., Guo X., Fu Y., He H., Sun J., Xing L., Liu B., Xue X. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye. ACS Appl. Mater. Interfaces. 2016;8:21302–21314. doi: 10.1021/acsami.6b05252. PubMed DOI
Yan S., Chen Z., Lu Z., Wang X. Piezoelectric-Enhanced Photocatalytic Performance of BaTi2O5 Nanorods for Degradation of Organic Pollutants. ACS Appl. Nano Mater. 2023;6:15721–15733. doi: 10.1021/acsanm.3c02571. DOI
Ren Z., Li X., Guo L., Wu J., Li Y., Liu W., Li P., Fu Y., Ma J. Facile synthesis of ZnO/ZnS heterojunction nanoarrays for enhanced piezo-photocatalytic performance. Mater. Lett. 2021;292:129635. doi: 10.1016/j.matlet.2021.129635. DOI