Oxygen Vacancies and Surface Wettability: Key Factors in Activating and Enhancing the Solar Photocatalytic Activity of ZnO Tetrapods

. 2023 Nov 15 ; 24 (22) : . [epub] 20231115

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38003527

Grantová podpora
Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences. Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences.

This paper reports on the high photocatalytic activity of ZnO tetrapods (ZnO-Ts) using visible/solar light and hydrodynamic water flow. It was shown that surface oxygen defects are a key factor in the photocatalytic activity of the ZnO-Ts. The ability to control the surface wettability of the ZnO-Ts and the associated concentration of surface defects was demonstrated. It was demonstrated that the photocatalytic activity during the MB decomposition process under direct and simulated sunlight is essentially identical. This presents excellent prospects for utilizing the material in solar photocatalysis.

Zobrazit více v PubMed

Pan X., Yang X., Yu M., Lu X., Kang H., Yang M.-Q., Qian Q., Zhao X., Liang S., Bian Z. 2D MXenes polar catalysts for multi-renewable energy harvesting applications. Nat. Commun. 2023;14:4183. doi: 10.1038/s41467-023-39791-w. PubMed DOI PMC

Li J., Lv X., Weng B., Roeffaers M.B., Jia H. Engineering light propagation for synergetic photo- and thermocatalysis toward volatile organic compounds elimination. Chem. Eng. J. 2023;461:142022. doi: 10.1016/j.cej.2023.142022. DOI

Feng W., Lei Y., Wu X., Yuan J., Chen J., Xu D., Zhang X., Zhang S., Liu P., Zhang L., et al. Tuning the interfacial electronic structure via Au clusters for boosting photocatalytic H2 evolution. J. Mater. Chem. A. 2021;9:1759–1769. doi: 10.1039/D0TA09217G. DOI

Abdullah F.H., Bakar N.H.H.A., Bakar M.A. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. J. Hazard. Mater. 2022;424:127416. doi: 10.1016/j.jhazmat.2021.127416. PubMed DOI

Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018;81:536–551. doi: 10.1016/j.rser.2017.08.020. DOI

Meulenkamp E.A. Synthesis and Growth of ZnO Nanoparticles. J. Phys. Chem. B. 1998;102:5566–5572. doi: 10.1021/jp980730h. DOI

Gonzalez-Valls I., Lira-Cantu M. Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review. Energy Environ. Sci. 2008;2:19–34. doi: 10.1039/B811536B. DOI

Tong Y., Liu Y., Shao C., Liu Y., Xu C., Zhang J., Lu Y., Shen D., Fan X. Growth and Optical Properties of Faceted Hexagonal ZnO Nanotubes. J. Phys. Chem. B. 2006;110:14714–14718. doi: 10.1021/jp056654h. PubMed DOI

Taniguchi T., Yamaguchi K., Shigeta A., Matsuda Y., Hayami S., Shimizu T., Matsui T., Yamazaki T., Funatstu A., Makinose Y., et al. Enhanced and Engineered d0Ferromagnetism in Molecularly-Thin Zinc Oxide Nanosheets. Adv. Funct. Mater. 2013;23:3140–3145. doi: 10.1002/adfm.201202704. DOI

Qiu Y., Yang S. ZnO Nanotetrapods: Controlled Vapor-Phase Synthesis and Application for Humidity Sensing. Adv. Funct. Mater. 2007;17:1345–1352. doi: 10.1002/adfm.200601128. DOI

Janotti A., Van de Walle C.G. Native point defects in ZnO. Phys. Rev. B. 2007;76:165202. doi: 10.1103/PhysRevB.76.165202. DOI

Devynck F., Alkauskas A., Broqvist P., Pasquarello A. Charge transition levels of carbon-, oxygen-, and hydrogen-related defects at the SiC/SiO2interface through hybrid functionals. Phys. Rev. B. 2011;84:235320. doi: 10.1103/PhysRevB.84.235320. DOI

Vanheusden K., Warren W.L., Seager C.H., Tallant D.R., Voigt J.A., Gnade B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996;79:7983–7990. doi: 10.1063/1.362349. DOI

Kurtz M., Strunk J., Hinrichsen O., Muhler M., Fink K., Meyer B., Wöll C. Active Sites on Oxide Surfaces: ZnO-Catalyzed Synthesis of Methanol from CO and H2. Angew. Chem. Int. Ed. 2005;44:2790–2794. doi: 10.1002/anie.200462374. PubMed DOI

Liu K., Yao X., Jiang L. Recent developments in bio-inspired special wettability. Chem. Soc. Rev. 2010;39:3240–3255. doi: 10.1039/b917112f. PubMed DOI

Li J., Sun Q., Han S., Wang J., Wang Z., Jin C. Reversibly light-switchable wettability between superhydrophobicity and superhydrophilicity of hybrid ZnO/bamboo surfaces via alternation of UV irradiation and dark storage. Prog. Org. Coatings. 2015;87:155–160. doi: 10.1016/j.porgcoat.2015.05.028. DOI

Miyauchi M., Nakajima A., Watanabe T., Hashimoto K. Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films. Chem. Mater. 2002;14:2812–2816. doi: 10.1021/cm020076p. DOI

Watanabe T., Yoshida N. Wettability control of a solid surface by utilizing photocatalysis. Chem. Rec. 2008;8:279–290. doi: 10.1002/tcr.20154. PubMed DOI

Liu H., Feng L., Zhai J., Jiang L., Zhu D. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydro-philicity. Langmuir. 2004;20:5659–5661. doi: 10.1021/la036280o. PubMed DOI

Feng X., Feng L., Jin M., Zhai J., Jiang L., Zhu D. Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films. J. Am. Chem. Soc. 2004;126:62–63. doi: 10.1021/ja038636o. PubMed DOI

Wang L., Zhang S., Wu S., Long Y., Li L., Zheng Z., Hei Y., Zhou L., Luo L., Jiang F. Controlling wettability of AgI/BiVO4 composite photocatalyst and its effect on photocatalytic performance. J. Alloy. Compd. 2020;835:155367. doi: 10.1016/j.jallcom.2020.155367. DOI

Li H., Wang L., Pi X., Ma M., Jiang X., Ji S., Jiang F., Luo L. Effect of the wettability of Ag2MoO4/BiVO4 {010} composite on the photocatalytic degradation for 17α-ethinyl estradiol. J. Alloy. Compd. 2022;899:163295. doi: 10.1016/j.jallcom.2021.163295. DOI

Zhu H., Cai S., Liao G., Gao Z.F., Min X., Huang Y., Jin S., Xia F. Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Catal. 2021;11:14751–14771. doi: 10.1021/acscatal.1c04049. DOI

Oba F., Togo A., Tanaka I., Paier J., Kresse G. Defect energetics in ZnO: A hybrid Hartree-Fock density functional study. Phys. Rev. B. 2008;77:245202. doi: 10.1103/PhysRevB.77.245202. DOI

Zheng J., Jiang Q., Lian J. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Appl. Surf. Sci. 2011;257:5083–5087. doi: 10.1016/j.apsusc.2011.01.025. DOI

Tam K.H., Cheung C.K., Leung Y.H., Djurišić A.B., Ling C.C., Beling C.D., Fung S., Kwok W.M., Chan W.K., Phillips D.L., et al. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B. 2006;110:20865–20871. doi: 10.1021/jp063239w. PubMed DOI

Bukhtiyarov V.I., Hävecker M., Kaichev V.V., Knop-Gericke A., Mayer R.W., Schlögl R. Atomic oxygen species on silver: Photoelectron spectroscopy and X-ray absorption studies. Phys. Rev. B. 2003;67:235422. doi: 10.1103/PhysRevB.67.235422. DOI

Lee K., Sahu M., Hajra S., Abolhassani R., Mistewicz K., Toroń B., Rubahn H.-G., Mishra Y.K., Kim H.J. Zinc oxide tetrapod sponges for environmental pollutant monitoring and degradation. J. Mater. Res. Technol. 2023;22:811–824. doi: 10.1016/j.jmrt.2022.11.142. DOI

Chamoli P., Shukla R.K., Bezbaruah A.N., Kar K.K., Raina K. Microwave-assisted rapid synthesis of honeycomb core-ZnO tetrapods nanocomposites for excellent photocatalytic activity against different organic dyes. Appl. Surf. Sci. 2021;555:149663. doi: 10.1016/j.apsusc.2021.149663. DOI

Heo S.-G., Jo S.-I., Jeong G.-H. Revealing the enhanced photocatalytic properties of ZnO tetrapods produced by atmospheric-pressure microwave plasma jet system. Curr. Appl. Phys. 2023;46:46–54. doi: 10.1016/j.cap.2022.12.004. DOI

Kumar S., Kaushik R., Purohit L. Novel ZnO tetrapod-reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of phenolic compounds and MB dye. J. Mol. Liq. 2021;327:114814. doi: 10.1016/j.molliq.2020.114814. DOI

Mourya A.K., Singh R.P., Kumar T., Talmale A.S., Gaikwad G.S., Wankhade A.V. Tuning the morphologies of ZnO for enhanced photocatalytic activity. Inorg. Chem. Commun. 2023;154:110850. doi: 10.1016/j.inoche.2023.110850. DOI

Qi F., Gao X., Wang C., Shuai Y., Yang L., Liao R., Xin J., Peng S., Shuai C. In situ grown silver nanoparticles on tetrapod-like zinc oxide whisker for photocatalytic antibacterial in scaffolds. Mater. Today Sustain. 2022;19:100210. doi: 10.1016/j.mtsust.2022.100210. DOI

Guo M.Y., Ng A.M.C., Liu F., Djurišić A.B., Chan W.K., Su H., Wong K.S. Effect of Native Defects on Photocatalytic Properties of ZnO. J. Phys. Chem. C. 2011;115:11095–11101. doi: 10.1021/jp200926u. DOI

Ferreira N.S., Sasaki J.M., Silva R.S., Jr., Attah-Baah J.M., Macêdo M.A. Visible-Light-Responsive Photocatalytic Activity Significantly Enhanced by Active [VZn+VO+] Defects in Self-Assembled ZnO Nanoparticles. Inorg. Chem. 2021;60:4475–4496. doi: 10.1021/acs.inorgchem.0c03327. PubMed DOI

Park S.J., Das G.S., Schütt F., Adelung R., Mishra Y.K., Tripathi K., Kim T.M. Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: Degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Mater. 2019;11:8. doi: 10.1038/s41427-019-0107-0. DOI

Mishra Y.K., Modi G., Cretu V., Postica V., Lupan O., Reimer T., Paulowicz I., Hrkac V., Benecke W., Kienle L., et al. Direct Growth of Freestanding ZnO Tetrapod Networks for Multifunctional Applications in Photocatalysis, UV Photodetection, and Gas Sensing. ACS Appl. Mater. Interfaces. 2015;7:14303–14316. doi: 10.1021/acsami.5b02816. PubMed DOI

Ghosh A., Guha P., Samantara A.K., Jena B.K., Bar R., Ray S., Satyam P.V. Simple Growth of Faceted Au–ZnO Hetero-nanostructures on Silicon Substrates (Nanowires and Triangular Nanoflakes): A Shape and Defect Driven Enhanced Photocatalytic Performance under Visible Light. ACS Appl. Mater. Interfaces. 2015;7:9486–9496. doi: 10.1021/acsami.5b00634. PubMed DOI

Sun C., Fu Y., Wang Q., Xing L., Liu B., Xue X. Ultrafast piezo-photocatalytic degradation of organic pollutions by Ag2O/tetrapod-ZnO nanostructures under ultrasonic/UV exposure. RSC Adv. 2016;6:87446–87453. doi: 10.1039/C6RA13464E. DOI

Lv Y., Yao W., Ma X., Pan C., Zong R., Zhu Y. The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1−x photocatalyst. Catal. Sci. Technol. 2013;3:3136–3146. doi: 10.1039/c3cy00369h. DOI

Zhu H., Zhang C., Xie K., Li X., Liao G. Photocatalytic degradation of organic pollutants over MoS2/Ag-ZnFe2O4 Z-scheme heterojunction: Revealing the synergistic effects of exposed crystal facets, defect engineering, and Z-scheme mechanism. Chem. Eng. J. 2023;453:139775. doi: 10.1016/j.cej.2022.139775. DOI

Yang B., Wang Z., Zhao J., Sun X., Wang R., Liao G., Jia X. 1D/2D carbon-doped nanowire/ultra-thin nanosheet g-C3N4 isotype heterojunction for effective and durable photocatalytic H2 evolution. Int. J. Hydrogen Energy. 2021;46:25436–25447. doi: 10.1016/j.ijhydene.2021.05.066. DOI

Tan H., Zhao Z., Zhu W.-B., Coker E.N., Li B., Zheng M., Yu W., Fan H., Sun Z. Oxygen Vacancy Enhanced Photocatalytic Activity of Pervoskite SrTiO3. ACS Appl. Mater. Interfaces. 2014;6:19184–19190. doi: 10.1021/am5051907. PubMed DOI

Lv Y., Zhu Y., Zhu Y. Enhanced photocatalytic performance for the BiPO4-x nanorod induced by surface oxygen vacancy. J. Phys. Chem. C. 2013;117:18520–18528. doi: 10.1021/jp405596e. DOI

Xu X., Ding X., Yang X., Wang P., Li S., Lu Z., Chen H. Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study. J. Hazard. Mater. 2019;364:691–699. doi: 10.1016/j.jhazmat.2018.10.063. PubMed DOI

Liu J., Xie F., Li R., Li T., Jia Z., Wang Y., Wang Y., Zhang X., Fan C. TiO2-x/Ag3PO4 photocatalyst: Oxygen vacancy dependent visible light photocatalytic performance and BPA degradative pathway. Mater. Sci. Semicond. Process. 2019;97:1–10. doi: 10.1016/j.mssp.2019.03.002. DOI

Bettini S., Pagano R., Valli D., Ingrosso C., Roeffaers M., Hofkens J., Giancane G., Valli L. ZnO nanostructures based piezo-photocatalytic degradation enhancement of steroid hormones. Surfaces Interfaces. 2023;36:102581. doi: 10.1016/j.surfin.2022.102581. DOI

Xue X., Zang W., Deng P., Wang Q., Xing L., Zhang Y., Wang Z.L. Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy. 2015;13:414–422. doi: 10.1016/j.nanoen.2015.02.029. DOI

Ye Y., Wang K., Huang X., Lei R., Zhao Y., Liu P. Integration of piezoelectric effect into a Au/ZnO photocatalyst for efficient charge separation. Catal. Sci. Technol. 2019;9:3771–3778. doi: 10.1039/C9CY00920E. DOI

Chimupala Y., Phromma C., Yimklan S., Semakul N., Ruankham P. Dye wastewater treatment enabled by piezo-enhanced photocatalysis of single-component ZnO nanoparticles. RSC Adv. 2020;10:28567–28575. doi: 10.1039/D0RA04746E. PubMed DOI PMC

Yu C., Yu X.-X., Zheng D.-S., Yin H. Piezoelectric potential enhanced photocatalytic performance based on ZnO with different nanostructures. Nanotechnology. 2021;32:135703. doi: 10.1088/1361-6528/abd1ab. PubMed DOI

Kumar M., Vaish R., Elqahtani Z.M., Kebaili I., Al-Buriahi M., Sung T.H., Hwang W., Kumar A. Piezo-photocatalytic activity of Bi2VO5.5 for methylene blue dye degradation. J. Mater. Res. Technol. 2022;21:1998–2012. doi: 10.1016/j.jmrt.2022.09.130. DOI

Masekela D., Masekela D., Hintsho-Mbita N.C., Hintsho-Mbita N.C., Ntsendwana B., Ntsendwana B., Mabuba N., Mabuba N. Thin Films (FTO/BaTiO3/AgNPs) for Enhanced Piezo-Photocatalytic Degradation of Methylene Blue and Ciprofloxacin in Wastewater. ACS Omega. 2022;7:24329–24343. doi: 10.1021/acsomega.2c01699. PubMed DOI PMC

Adiba A., Waris, Munjal S., Khan M.Z., Ahmad T. Piezo-photocatalytic degradation of organic pollutant by a novel BaTiO3–NiO composite. Eur. Phys. J. Plus. 2023;138:408. doi: 10.1140/epjp/s13360-023-04029-7. DOI

Fu Y., Wang Y., Zhao H., Zhang Z., An B., Bai C., Ren Z., Wu J., Li Y., Liu W., et al. Synthesis of ternary ZnO/ZnS/MoS2 piezoelectric nanoarrays for enhanced photocatalytic performance by conversion of dual heterojunctions. Appl. Surf. Sci. 2021;556:149695. doi: 10.1016/j.apsusc.2021.149695. DOI

Kumar M., Vaish R., ben Ahmed S. Piezo-photocatalytic activity of mechanochemically synthesized BiVO4 for dye cleaning. J. Am. Ceram. Soc. 2022;105:2309–2322. doi: 10.1111/jace.18233. DOI

Hong D., Zang W., Guo X., Fu Y., He H., Sun J., Xing L., Liu B., Xue X. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye. ACS Appl. Mater. Interfaces. 2016;8:21302–21314. doi: 10.1021/acsami.6b05252. PubMed DOI

Yan S., Chen Z., Lu Z., Wang X. Piezoelectric-Enhanced Photocatalytic Performance of BaTi2O5 Nanorods for Degradation of Organic Pollutants. ACS Appl. Nano Mater. 2023;6:15721–15733. doi: 10.1021/acsanm.3c02571. DOI

Ren Z., Li X., Guo L., Wu J., Li Y., Liu W., Li P., Fu Y., Ma J. Facile synthesis of ZnO/ZnS heterojunction nanoarrays for enhanced piezo-photocatalytic performance. Mater. Lett. 2021;292:129635. doi: 10.1016/j.matlet.2021.129635. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...