Combined SPRi Sensor for Simultaneous Detection of Nitrate and Ammonium in Wastewater
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu dopisy
Grantová podpora
CZ.02.1.01./0.0/0.0/17_049/0008419
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018098
Ministerstvo Školství, Mládeže a Tělovýchovy
SP2020/14
Vysoká Škola Bánská - Technická Univerzita Ostrava
PubMed
33494497
PubMed Central
PMC7865960
DOI
10.3390/s21030725
PII: s21030725
Knihovny.cz E-zdroje
- Klíčová slova
- ammonium, aquaponics, nitrate, sensor, surface plasmon resonance, wastewater,
- Publikační typ
- dopisy MeSH
Water pollution is a serious problem in modern society. Agriculture, being responsible for the discharge of agrochemicals, organic matter, or drug residues, produces a huge amount of wastewater. Aquaponics has the potential to reduce both water consumption and the impact of water pollution on fish farming and plant production. In the aquatic environment, inorganic nitrogen is mostly present in the form of nitrate and ammonium ions. Nitrate, as a final product of ammonia mineralization, is the most common chemical contaminant in aquifers around the world. For continuous monitoring of nitrogen compounds in wastewater, we propose a sensor for the simultaneous detection of nitrate and ammonium. A surface plasmon resonance imaging method with enzyme-mediated detection was used. Active layers of nitrate reductase and glutamine synthetase were created on the gold surface of a biochip and tested for the sensing of nitrate and ammonium in water from an aquaponic system. The proposed sensor was applied in water samples with a concentration of NO3- and NH4+ in a range between 24-780 mg·L-1 and 0.26-120 mg·L-1, respectively, with minimal pretreatment of a sample by its dilution with a buffer prior to contact on a biochip surface.
Zobrazit více v PubMed
Mateo-Sagasta J., Marjani Zadeh S., Turral H. More People, More Food, Worse Water?: A Global Review of Water Pollution from Agriculture. Food and Agriculture Organization of the United Nations; Rome, Italy: 2018.
Evans A.E., Mateo-Sagasta J., Qadir M., Boelee E., Ippolito A. Agricultural water pollution: Key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 2019;36:20–27. doi: 10.1016/j.cosust.2018.10.003. DOI
Cui M., Zeng L., Qin W., Feng J. Measures for reducing nitrate leaching in orchards: A review. Environ. Pollut. 2020;263:114553. doi: 10.1016/j.envpol.2020.114553. PubMed DOI
Rabalais N.N., Turner R.E., Díaz R.J., Justić D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 2009;66:1528–1537. doi: 10.1093/icesjms/fsp047. DOI
Spalding R.F., Exner M.E. Occurrence of Nitrate in groundwater—A review. J. Environ. Qual. 1993;22:392–402. doi: 10.2134/jeq1993.00472425002200030002x. DOI
Camargo J.A., Alonso A., Salamanca A. Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates. Chemosphere. 2005;58:1255–1267. doi: 10.1016/j.chemosphere.2004.10.044. PubMed DOI
Ward M.H., Jones R.R., Brender J.D., De Kok T.M., Weyer P.J., Nolan B.T., Villanueva C.M., Van Breda S.G. Drinking water Nitrate and Human health: An updated review. Int. J. Environ. Res. Public Health. 2018;15:1557. doi: 10.3390/ijerph15071557. PubMed DOI PMC
Brender J.D., Weyer P.J., Romitti P.A., Mohanty B.P., Shinde M.U., Vuong A.M., Sharkey J.R., Dwivedi D., Horel S.A., Kantamneni J., et al. Prenatal Nitrate intake from drinking water and selected birth defects in offspring of participants in the national birth defects prevention study. Environ. Health Perspect. 2013;121:1083–1089. doi: 10.1289/ehp.1206249. PubMed DOI PMC
Blaisdell J., Turyk M.E., Almberg K.S., Jones R.M., Stayner L. Prenatal exposure to nitrate in drinking water and the risk of congenital anomalies. Environ. Res. 2019;176:108553. doi: 10.1016/j.envres.2019.108553. PubMed DOI PMC
World Health Organization . Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum. 4th ed. World Health Organization; Geneva, Switzerland: 2017. PubMed
Milne I., Seager J., Mallett M., Sims I. Effects of short-term pulsed ammonia exposure on fish. Environ. Toxicol. Chem. 2000;19:2929–2936. doi: 10.1002/etc.5620191213. DOI
Moorcroft M.J. Detection and determination of nitrate and nitrite: A review. Talanta. 2001;54:785–803. doi: 10.1016/S0039-9140(01)00323-X. PubMed DOI
Wang Q.-H., Yu L.-J., Liu Y., Lin L., Lu R.-G., Zhu J.-P., He L., Lu Z.-L. Methods for the detection and determination of nitrite and nitrate: A review. Talanta. 2017;165:709–720. doi: 10.1016/j.talanta.2016.12.044. PubMed DOI
Sohail M., Adeloju S.B. Nitrate biosensors and biological methods for nitrate determination. Talanta. 2016;153:83–98. doi: 10.1016/j.talanta.2016.03.002. PubMed DOI
Borcherding H., Leikefeld S., Frey C., Diekmann S., Steinrücke P. Enzymatic microtiter plate-based Nitrate detection in environmental and medical analysis. Anal. Biochem. 2000;282:1–9. doi: 10.1006/abio.2000.4585. PubMed DOI
Miranda K.M., Espey M.G., Wink D.A. A Rapid, Simple spectrophotometric method for simultaneous detection of Nitrate and Nitrite. Nitric Oxide. 2001;5:62–71. doi: 10.1006/niox.2000.0319. PubMed DOI
Ivancic I. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 1984;18:1143–1147. doi: 10.1016/0043-1354(84)90230-6. DOI
Hashihama F., Kanda J., Tauchi A., Kodama T., Saito H., Furuya K. Liquid waveguide spectrophotometric measurement of nanomolar ammonium in seawater based on the indophenol reaction with O-Phenylphenol (OPP) Talanta. 2015;143:374–380. doi: 10.1016/j.talanta.2015.05.007. PubMed DOI
Li P., Deng Y., Shu H., Lin K., Chen N., Jiang Y., Chen J., Yuan D., Ma J. High-frequency underway analysis of ammonium in coastal waters using an integrated syringe-pump-based environmental-water analyzer (iSEA) Talanta. 2019;195:638–646. doi: 10.1016/j.talanta.2018.11.108. PubMed DOI
Lin K., Li P., Wu Q., Feng S., Ma J., Yuan D. Automated determination of ammonium in natural waters with reverse flow injection analysis based on the indophenol blue method with O-Phenylphenol. Microchem. J. 2018;138:519–525. doi: 10.1016/j.microc.2018.02.004. DOI
Ma J., Li P., Lin K., Chen Z., Chen N., Liao K., Yuan D. Optimization of a salinity-interference-free indophenol method for the determination of ammonium in natural waters using O-Phenylphenol. Talanta. 2018;179:608–614. doi: 10.1016/j.talanta.2017.11.069. PubMed DOI
Can F., Ozoner S.K., Ergenekon P., Erhan E. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode. Mater. Sci. Eng. C. 2012;32:18–23. doi: 10.1016/j.msec.2011.09.004. PubMed DOI
Larsen L.H., Damgaard L.R., Kjær T., Stenstrøm T., Lynggaard-Jensen A., Revsbech N.P. Fast responding biosensor for on-line determination of nitrate/nitrite in activated sludge. Water Res. 2000;34:2463–2468. doi: 10.1016/S0043-1354(99)00423-6. DOI
Sachdeva V., Hooda V. A new immobilization and sensing platform for nitrate quantification. Talanta. 2014;124:52–59. doi: 10.1016/j.talanta.2014.02.014. PubMed DOI
Xuejiang W., Dzyadevych S.V., Chovelon J., Renault N., Ling C., Siqing X., Jianfu Z. Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes. Talanta. 2006;69:450–455. doi: 10.1016/j.talanta.2005.10.014. PubMed DOI
Akbari A., Derakhshesh M., Abrishami M.E. Nitrate ion effect on gold nanorods plasmon resonance behavior: A potential chemical sensor. Inorg. Chem. Commun. 2018;98:159–164. doi: 10.1016/j.inoche.2018.10.023. DOI
Miao P., Liu Z., Guo J., Yuan M., Zhong R., Wang L., Zhang F. A novel ultrasensitive surface plasmon resonance-based nanosensor for nitrite detection. RSC Adv. 2019;9:17698–17705. doi: 10.1039/C9RA02460C. PubMed DOI PMC
Daniel W.L., Han M.S., Lee J.S., Mirkin C.A. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J. Am. Chem. Soc. 2009;131:6362–6363. doi: 10.1021/ja901609k. PubMed DOI
Gupta B.D., Kant R. Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt. Laser Technol. 2018;101:144–161. doi: 10.1016/j.optlastec.2017.11.015. DOI
Parveen S., Pathak A., Gupta B.D. Fiber optic SPR nanosensor based on synergistic effects of CNT/Cu-nanoparticles composite for ultratrace sensing of nitrate. Sens. Actuators B Chem. 2017;246:910–919. doi: 10.1016/j.snb.2017.02.170. DOI
Zhang Y.-N., Siyu E., Tao B., Wu Q., Han B. Reflective SPR sensor for simultaneous measurement of nitrate concentration and temperature. IEEE Trans. Instrum. Meas. 2019;68:4566–4574. doi: 10.1109/TIM.2018.2886950. DOI
Beaton A.D., Cardwell C.L., Thomas R.S., Sieben V.J., Legiret F.-E., Waugh E.M., Statham P.J., Mowlem M.C., Morgan H. Lab-on-Chip measurement of Nitrate and Nitrite for in situ analysis of natural waters. Environ. Sci. Technol. 2012;46:9548–9556. doi: 10.1021/es300419u. PubMed DOI
Hwang H., Kim Y., Cho J., Lee J.-Y., Choi M.-S., Cho Y.-K. Lab-on-a-Disc for simultaneous determination of nutrients in water. Anal. Chem. 2013;85:2954–2960. doi: 10.1021/ac3036734. PubMed DOI
Schierenbeck T.M., Smith M.C. Path to impact for autonomous field deployable chemical sensors: A case study of in situ nitrite sensors. Environ. Sci. Technol. 2017;51:4755–4771. doi: 10.1021/acs.est.6b06171. PubMed DOI
Murray E., Roche P., Briet M., Moore B., Morrin A., Diamond D., Paull B. Fully automated, low-cost ion chromatography system for in-situ analysis of nitrite and nitrate in natural waters. Talanta. 2020;216:120955. doi: 10.1016/j.talanta.2020.120955. PubMed DOI
FAO . Definition of Aquaculture. FAO; Bangkok, Thailand: 1988. pp. 1–3.
Diver S. Aquaponics—Integration of Hydroponics with Aquaculture. ATTRA—National Sustainable Agriculture Information Service; Butte, MT, USA: 2006. pp. 1–28.
Lennard W.A. Aquaponics: A nutrient dynamic process and the relationship to fish feeds. World Aquac. 2015;46:20–23.
Palm H.W., Knaus U., Appelbaum S., Goddek S., Strauch S.M., Vermeulen T., Jijakli M.H., Kotzen B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018;26:813–842. doi: 10.1007/s10499-018-0249-z. DOI
Yep B., Zheng Y. Aquaponic trends and challenges—A review. J. Clean. Prod. 2019;228:1586–1599. doi: 10.1016/j.jclepro.2019.04.290. DOI
Hu Z., Lee J.-W., Chandran K., Kim S., Brotto A.C., Khanal S.K. Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol. 2015;188:92–98. doi: 10.1016/j.biortech.2015.01.013. PubMed DOI
Zou Y., Hu Z., Zhang J., Xie H., Liang S., Wang J., Yan R. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation. Environ. Sci. Pollut. Res. 2016;23:6671–6679. doi: 10.1007/s11356-015-5898-0. PubMed DOI
Yang T., Kim H.-J. Comparisons of nitrogen and phosphorus mass balance for tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. J. Clean. Prod. 2020;274:122619. doi: 10.1016/j.jclepro.2020.122619. DOI
Sachdeva V., Hooda V. Immobilization of nitrate reductase onto epoxy affixed silver nanoparticles for determination of soil nitrates. Int. J. Biol. Macromol. 2015;79:240–247. doi: 10.1016/j.ijbiomac.2015.04.072. PubMed DOI
Amaya K.R., Kocherginskaya S.A., Mackie R.I., Cann I.K.O. Biochemical and mutational analysis of Glutamine Synthetase Type III from the Rumen Anaerobe Ruminococcus albus 8. J. Bacteriol. 2005;187:7481–7491. doi: 10.1128/JB.187.21.7481-7491.2005. PubMed DOI PMC
Gilliam M., Sherman M., Griscavage J., Ignarro L. A spectrophotometric assay for Nitrate using NADPH Oxidation by Aspergillus Nitrate reductase. Anal. Biochem. 1993;212:359–365. doi: 10.1006/abio.1993.1341. PubMed DOI
Colanduoni J., Nissan R., Villafranca J.J. Studies of the mechanism of Glutamine Synthetase utilizing pH-dependent behavior in catalysis and binding. J. Biol. Chem. 1987;262:3037–3043. doi: 10.1016/S0021-9258(18)61465-6. PubMed DOI
Nguyen H.H., Park J., Kang S., Kim M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors. 2015;15:10481–10510. doi: 10.3390/s150510481. PubMed DOI PMC
Homola J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003;377:528–539. doi: 10.1007/s00216-003-2101-0. PubMed DOI
Naimushin A.N., Soelberg S.D., Nguyen D.K., Dunlap L., Bartholomew D., Elkind J., Melendez J., Furlong C.E. Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens. Bioelectron. 2002;17:573–584. doi: 10.1016/S0956-5663(02)00014-3. PubMed DOI
Homola J., Yee S.S., Gauglitz G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999;54:3–15. doi: 10.1016/S0925-4005(98)00321-9. DOI
Scarano S., Scuffi C., Mascini M., Minunni M.E. Surface plasmon resonance imaging (SPRi)-based sensing: A new approach in signal sampling and management. Biosens. Bioelectron. 2010;26:1380–1385. doi: 10.1016/j.bios.2010.07.056. PubMed DOI
Piliarik M., Párová L., Homola J. High-throughput SPR sensor for food safety. Biosens. Bioelectron. 2009;24:1399–1404. doi: 10.1016/j.bios.2008.08.012. PubMed DOI
Chinowsky T.M., Grow M.S., Johnston K.S., Nelson K., Edwards T., Fu E., Yager P. Compact, high performance surface plasmon resonance imaging system. Biosens. Bioelectron. 2007;22:2208–2215. doi: 10.1016/j.bios.2006.10.030. PubMed DOI PMC
Mélaïne F., Roupioz Y., Buhot A. Gold nanoparticles surface plasmon resonance enhanced signal for the detection of small molecules on split-aptamer microarrays (small molecules detection from split-aptamers) Microarrays. 2015;4:41–52. doi: 10.3390/microarrays4010041. PubMed DOI PMC
Mélaïne F., Roupioz Y., Buhot A. Small molecule SPR imaging detection from split aptamer microarrays. Procedia Technol. 2017;27:6–7. doi: 10.1016/j.protcy.2017.04.004. DOI
Pillet F., Romera C., Trevisiol E., Bellon S., Teulade-Fichou M.-P., François J.-M., Pratviel G., Leberre V.A. Surface plasmon resonance imaging (SPRi) as an alternative technique for rapid and quantitative screening of small molecules, useful in drug discovery. Sens. Actuators B Chem. 2011;157:304–309. doi: 10.1016/j.snb.2011.03.082. DOI
Fan Z.-B., Gong X.-Q., Lu D.-F., Gao R., Qi Z.-M. Benzo[a]pyrene sensing properties of surface plasmon resonance imaging sensor based on the Hue Algorithm. Acta Physico-Chimica Sin. 2017;33:1001–1009. doi: 10.3866/PKU.WHXB201701131. DOI
Hausler P., Wunderlich L., Fischer J., Pfab C., Heckscher S., Hirsch T., Bierl R. Surface plasmon resonance imaging for detection of drug metabolites in water. In: Baldini F., Homola J., Lieberman R.A., editors. Optical Sensors 2019. Volume 11028 Spie-Int Soc Optical Engineering; Bellingham, WA, USA: 2019.
Liang S., Cai C., Gao R., Zhang M., Xue N., Qi Z.-M. AuAg alloy film-based colorful SPR imaging sensor for highly sensitive immunodetection of benzo[a]pyrene in water. Appl. Opt. 2019;58:6942–6948. doi: 10.1364/AO.58.006942. PubMed DOI
Genua M., Garçon L.-A., Mounier V., Wehry H., Buhot A., Billon M., Calemczuk R., Bonnaffe D., Hou Y., Livache T. SPR imaging based electronic tongue via landscape images for complex mixture analysis. Talanta. 2014;130:49–54. doi: 10.1016/j.talanta.2014.06.038. PubMed DOI
Ru D., Liu J., Hu Z., Zou Y., Jiang L., Cheng X., Lv Z. Improvement of aquaponic performance through micro- and macro-nutrient addition. Environ. Sci. Pollut. Res. 2017;24:16328–16335. doi: 10.1007/s11356-017-9273-1. PubMed DOI
Timmons M.B., Ebeling J.M. Recirculating Aquaculture. Cayuga Aqua Ventures, LLC; Ithaca, NY, USA: 2010.
Gräber A., Junge R. Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production. Desalination. 2009;246:147–156. doi: 10.1016/j.desal.2008.03.048. DOI
Kyaw T.Y., Ng A.K. Smart Aquaponics System for Urban Farming. Energy Procedia. 2017;143:342–347. doi: 10.1016/j.egypro.2017.12.694. DOI
Murad S.A.Z., Harun A., Mohyar S.N., Sapawi R., Ten S.Y. Design of aquaponics water monitoring system using Arduino microcontroller. AIP Conf. Proc. 2017;1885:020248. doi: 10.1063/1.5002442. DOI
Huang J., Bennett W.W., Teasdale P.R., Kankanamge N.R., Welsh D.T. A modified DGT technique for the simultaneous measurement of dissolved inorganic nitrogen and phosphorus in freshwaters. Anal. Chim. Acta. 2017;988:17–26. doi: 10.1016/j.aca.2017.08.024. PubMed DOI