Ceramic-Chromium Hall Sensors for Environments with High Temperatures and Neutron Radiation

. 2021 Jan 21 ; 21 (3) : . [epub] 20210121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33494501

Grantová podpora
633053 FP7 Fusion Energy Research
8D15001 Ministry of Education, Youth and Science
CZ.02.1.01/0.0/0.0/16_019/0000768 European Regional Development Fund
Strategy AV21 Akademie Věd České Republiky
LM2018110 Ministry of Education, Youth and Science
LNSM-LNSpin Ministry of Education, Youth and Science

Ceramic-chromium Hall sensors represent a temperature and radiation resistant alternative to Hall sensors based on semiconductors. Demand for these sensors is presently motivated by the ITER and DEMO nuclear fusion projects. The developed ceramic-chromium Hall sensors were tested up to a temperature of 550 °C and a magnetic field of 14 T. The magnitude of the sensitivity of the tested sensor was 6.2 mV/A/T at 20 °C and 4.6 mV/A/T at 500 °C. The sensitivity was observed to be weakly dependent on a temperature above 240 °C with an average temperature coefficient of 0.014%/°C and independent of the magnetic field with a relative average deviation below the measurement accuracy of 0.086%. A simulation of a neutron-induced transmutation was performed to assess changes in the composition of the chromium. After 5.2 operational years of the DEMO fusion reactor, the transmuted fraction of the chromium sensitive layer was found to be 0.27% at the most exposed sensor location behind the divertor cassette with a neutron fluence of 6.08 × 1025 n/m2. The ceramic-chromium Hall sensors show the potential to be suitable magnetic sensors for environments with high temperatures and strong neutron radiation.

Zobrazit více v PubMed

Tumanski S. Handbook of Magnetic Measurements. CRC Press; Boca Raton, FL, USA: 2016.

Popovic R.S. Hall Effect Devices. 2nd ed. IOP Publishing; Bristol, UK: 2004.

Hrostowski H.J., Morin F.J., Geballe T.H., Wheatley G.H. Hall Effect and Conductivity of InSb. Phys. Rev. 1955;100:1672–1676. doi: 10.1103/physrev.100.1672. DOI

Harman T.C. Electrical Properties of n-Type InAs. Phys. Rev. 1956;104:1562–1564. doi: 10.1103/PhysRev.104.1562. DOI

Oliver D.J. Electrical Properties of n-Type Gallium Arsenide. Phys. Rev. 1962;127:1045–1052. doi: 10.1103/PhysRev.127.1045. DOI

Aguilera I., Friedrich C., Blügel S. Electronic phase transitions of bismuth under strain from relativistic self-consistent GW calculations. Phys. Rev. B. 2015;91:125129. doi: 10.1103/PhysRevB.91.125129. DOI

Kittel C. Introduction to Solid State Physics. 4th ed. John Wiley & Sons Inc.; Hoboken, NJ, USA: 1971.

Völklein F. Galvanomagnetic and thermoelectric properties of antimony films. Thin Solid Films. 1990;191:1–12. doi: 10.1016/0040-6090(90)90268-i. DOI

Hurd C.M. The Hall Effect in Metals and Alloys. Springer Science and Business Media LLC; New York, NY, USA: 1972.

Entler S., Duran I., Sladek P., Vayakis G., Kocan M. Signal conditioning and processing for metallic Hall sensors. Fusion Eng. Des. 2017;123:783–786. doi: 10.1016/j.fusengdes.2017.04.106. DOI

ITER. [(accessed on 6 December 2020)]; Available online: https://www.iter.org.

Fusion Electricity, a Roadmap to the Realization of Fusion Energy; EUROfusion: EU. [(accessed on 6 December 2020)];2018 Available online: https://www.euro-fusion.org/eurofusion/roadmap.

Biel W., Albanese R., Ambrosino R., Ariola M., Berkel M., Bolshakova I., Brunner K., Cavazzana R., Cecconello M., Conroy S., et al. Diagnostics for plasma control-From ITER to DEMO. Fusion Eng. Des. 2019;146:465–472. doi: 10.1016/j.fusengdes.2018.12.092. DOI

Duran I., Sentkerestiová J., Kovařík K., Viererbl L. Prospects of steady state magnetic diagnostic of fusion reactors based on metallic Hall sensors. AIP Conf. Proc. 2012;1442:317–324. doi: 10.1063/1.4706886. DOI

Kocan M., Duran I., Entler S., Vayakis G., Carmona J., Gitton P., Guirao J., González M., Iglesias S., Pascual Q., et al. Final design of the ITER outer vessel steady-state magnetic sensors. Fusion Eng. Des. 2017;123:936–939. doi: 10.1016/j.fusengdes.2017.03.043. DOI

Duran I., Entler S., Kočan M., Kohout M., Viererbl L., Mušálek R., Chráska T., Vayakis G. Development of Bismuth Hall sensors for ITER steady-state magnetic diagnostics. Fusion Eng. Des. 2017;123:690–694. doi: 10.1016/j.fusengdes.2017.05.142. DOI

Duran I., Entler S., Kohout M., Kočan M., Vayakis G. High magnetic field test of Bismuth Hall sensors for ITER steady-state magnetic diagnostic. Rev. Sci. Instrum. 2016;87:11D446. doi: 10.1063/1.4964435. PubMed DOI

Entler S., Duran I., Kocan M., Vayakis G. Investigation of linearity of the ITER outer vessel steady-state magnetic field sensors at high temperature. J. Instrum. 2017;12:C07007. doi: 10.1088/1748-0221/12/07/c07007. PubMed DOI

Entler S., Sebek J., Duran I., Vyborny K., Grover O., Kocan M., Vayakis G. High magnetic field test of the ITER outer vessel steady-state magnetic field Hall sensors at ITER relevant temperature. Rev. Sci. Instrum. 2018;89:10J112. doi: 10.1063/1.5038812. PubMed DOI

Entler S., Kocan M., Duran I., Vayakis G., Lucca F., Viganò F., Cantu R. Recent Improvement of the Design of the ITER Steady-State Magnetic Sensors. IEEE Trans. Plasma Sci. 2018;46:1276–1280. doi: 10.1109/tps.2018.2795243. DOI

Kocan M., Duran I., Entler S., Vayakis G., Agostinetti P., Brombin M., Carmona J.M., Gambetta G., Jirman T., Marconato N., et al. A steady-state magnetic sensor for ITER and beyond: Development and final design. Rev. Sci. Instrum. 2018;89:10J119. doi: 10.1063/1.5038871. PubMed DOI

Duran I., Entler S., Grover O., Bolshakova I., Výborný K., Kočan M., Jirman T., Vayakis G., Vasyliev O., Radishevskyi M., et al. Status of steady-state magnetic diagnostic for ITER and outlook for possible materials of Hall sensors for DEMO. Fusion Eng. Des. 2019;146:2397–2400. doi: 10.1016/j.fusengdes.2019.03.201. DOI

Entler S., Duran I., Kovarik K., Sladek P., Grover O., Vilemova M., Najman D., Kohout M., Sebek J., Vyborny K., et al. Temperature dependence of the Hall coefficient of sensitive layer materials considered for DEMO Hall sensors. Fusion Eng. Des. 2020;153:111454. doi: 10.1016/j.fusengdes.2020.111454. DOI

Hernandez F.A., Pereslavtsev P., Zhou G., Neuberger H., Rey J., Kang Q., Boccaccini L.V., Bubelis E., Moscato I., Dongiovanni D.N. An enhanced, near-term HCPB design as driver blanket for the EU DEMO. Fusion Eng. Des. 2019;146:1186–1191. doi: 10.1016/j.fusengdes.2019.02.037. DOI

Bolshakova I., Bulavin M., Kargin N., Kost Y., Kuech T., Kulikov S., Radishevskiy M., Shurygin1 F., Strikhanov M., Vasil’evskii I., et al. Metal Hall sensors for the new generation fusion reactors of DEMO scale. Nucl. Fusion. 2017;57:116042. doi: 10.1088/1741-4326/aa7867. DOI

Bolshakova I., Horelkin P., Kost Y., Moroz A., Mykhashchuk Y., Radishevskiy M., Shurigin F., Vasyliev O., Kuech T., Pavlyk B., et al. Nanofilm Materials for Devices of Magnetic Field Measurement in Radiation Environment; Proceedings of the IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET); Lviv-Slavske, Ukraine. 25–29 February 2020; DOI

Entler S., Duran I., Kocan M., Vayakis G., Kohout M., Sebek J., Sladek P., Grover O., Vyborny K. Prospects for the steady-state magnetic diagnostic based on antimony Hall sensors for future fusion power reactors. Fusion Eng. Des. 2019;146:526–530. doi: 10.1016/j.fusengdes.2019.01.013. DOI

Kovarik K., Entler S., Duran I., Eade T. Analysis of Transmutation of Candidate Sensitive Layer Materials of Hall Detectors under DEMO Like Neutron Fluxes. Fusion Eng. Des. 2020;155:111670. doi: 10.1016/j.fusengdes.2020.111670. DOI

Fischer U. Guidelines for Neutronic Analyses, EUROfusion Internal Document EFDA_D_2L8TR9. EUROfusion; Culham, UK: 2018.

Gilbert M.R., Sublet J.-C.C. Handbook of Activation, Transmutation, and Radiation Damage, Properties of the Elements Simulated, Using Fispact-Ii & Tendl-2015. CCFE; Abingdon, UK: 2016. Magnetic Fusion Plants, Ccfe-R(16)36.

Eade T. Calculation of in-VV and ex-VV SDDR, EUROfusion Internal Document EFDA_D_2MQPRC. EUROfusion; Culham, UK: 2019.

Sublet J.C., Eastwood J.W., Morgan J.G., Fleming M., Gilbert M.R. The FISPACT-II User Manual, CCFE-R(11) Issue 4. CCFE; Abingdon, UK: 2013.

Fawcett E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 1988;60:209–283. doi: 10.1103/revmodphys.60.209. DOI

Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G.K.H., Marks L.D. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 2020;152:074101. doi: 10.1063/1.5143061. PubMed DOI

Madsen G.K.H., Singh D.J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006;175:67–71. doi: 10.1016/j.cpc.2006.03.007. DOI

Weinzettl V., Adamek J., Bilkova P., Havlicek J., Panek R., Hron M., Bogar O., Bohm P., Casolari A., Cavalier J., et al. Constraints on conceptual design of diagnostics for the high magnetic field COMPASS-U tokamak with hot walls. Fusion Eng. Des. 2019;146:1703–1707. doi: 10.1016/j.fusengdes.2019.03.020. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...