Ceramic-Chromium Hall Sensors for Environments with High Temperatures and Neutron Radiation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
633053
FP7 Fusion Energy Research
8D15001
Ministry of Education, Youth and Science
CZ.02.1.01/0.0/0.0/16_019/0000768
European Regional Development Fund
Strategy AV21
Akademie Věd České Republiky
LM2018110
Ministry of Education, Youth and Science
LNSM-LNSpin
Ministry of Education, Youth and Science
PubMed
33494501
PubMed Central
PMC7865485
DOI
10.3390/s21030721
PII: s21030721
Knihovny.cz E-zdroje
- Klíčová slova
- DEMO, Hall sensors, chromium, fusion, high temperature, metal, nanolayer, nuclear, radiation, resistant,
- Publikační typ
- časopisecké články MeSH
Ceramic-chromium Hall sensors represent a temperature and radiation resistant alternative to Hall sensors based on semiconductors. Demand for these sensors is presently motivated by the ITER and DEMO nuclear fusion projects. The developed ceramic-chromium Hall sensors were tested up to a temperature of 550 °C and a magnetic field of 14 T. The magnitude of the sensitivity of the tested sensor was 6.2 mV/A/T at 20 °C and 4.6 mV/A/T at 500 °C. The sensitivity was observed to be weakly dependent on a temperature above 240 °C with an average temperature coefficient of 0.014%/°C and independent of the magnetic field with a relative average deviation below the measurement accuracy of 0.086%. A simulation of a neutron-induced transmutation was performed to assess changes in the composition of the chromium. After 5.2 operational years of the DEMO fusion reactor, the transmuted fraction of the chromium sensitive layer was found to be 0.27% at the most exposed sensor location behind the divertor cassette with a neutron fluence of 6.08 × 1025 n/m2. The ceramic-chromium Hall sensors show the potential to be suitable magnetic sensors for environments with high temperatures and strong neutron radiation.
Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Prague 2 Czech Republic
Institute of Physics of CAS Cukrovarnicka 10 112 162 00 Prague 6 Czech Republic
Institute of Physics of CAS Na Slovance 1999 2 182 21 Prague 8 Czech Republic
Institute of Plasma Physics of CAS Za Slovankou 3 182 00 Prague Czech Republic
Zobrazit více v PubMed
Tumanski S. Handbook of Magnetic Measurements. CRC Press; Boca Raton, FL, USA: 2016.
Popovic R.S. Hall Effect Devices. 2nd ed. IOP Publishing; Bristol, UK: 2004.
Hrostowski H.J., Morin F.J., Geballe T.H., Wheatley G.H. Hall Effect and Conductivity of InSb. Phys. Rev. 1955;100:1672–1676. doi: 10.1103/physrev.100.1672. DOI
Harman T.C. Electrical Properties of n-Type InAs. Phys. Rev. 1956;104:1562–1564. doi: 10.1103/PhysRev.104.1562. DOI
Oliver D.J. Electrical Properties of n-Type Gallium Arsenide. Phys. Rev. 1962;127:1045–1052. doi: 10.1103/PhysRev.127.1045. DOI
Aguilera I., Friedrich C., Blügel S. Electronic phase transitions of bismuth under strain from relativistic self-consistent GW calculations. Phys. Rev. B. 2015;91:125129. doi: 10.1103/PhysRevB.91.125129. DOI
Kittel C. Introduction to Solid State Physics. 4th ed. John Wiley & Sons Inc.; Hoboken, NJ, USA: 1971.
Völklein F. Galvanomagnetic and thermoelectric properties of antimony films. Thin Solid Films. 1990;191:1–12. doi: 10.1016/0040-6090(90)90268-i. DOI
Hurd C.M. The Hall Effect in Metals and Alloys. Springer Science and Business Media LLC; New York, NY, USA: 1972.
Entler S., Duran I., Sladek P., Vayakis G., Kocan M. Signal conditioning and processing for metallic Hall sensors. Fusion Eng. Des. 2017;123:783–786. doi: 10.1016/j.fusengdes.2017.04.106. DOI
ITER. [(accessed on 6 December 2020)]; Available online: https://www.iter.org.
Fusion Electricity, a Roadmap to the Realization of Fusion Energy; EUROfusion: EU. [(accessed on 6 December 2020)];2018 Available online: https://www.euro-fusion.org/eurofusion/roadmap.
Biel W., Albanese R., Ambrosino R., Ariola M., Berkel M., Bolshakova I., Brunner K., Cavazzana R., Cecconello M., Conroy S., et al. Diagnostics for plasma control-From ITER to DEMO. Fusion Eng. Des. 2019;146:465–472. doi: 10.1016/j.fusengdes.2018.12.092. DOI
Duran I., Sentkerestiová J., Kovařík K., Viererbl L. Prospects of steady state magnetic diagnostic of fusion reactors based on metallic Hall sensors. AIP Conf. Proc. 2012;1442:317–324. doi: 10.1063/1.4706886. DOI
Kocan M., Duran I., Entler S., Vayakis G., Carmona J., Gitton P., Guirao J., González M., Iglesias S., Pascual Q., et al. Final design of the ITER outer vessel steady-state magnetic sensors. Fusion Eng. Des. 2017;123:936–939. doi: 10.1016/j.fusengdes.2017.03.043. DOI
Duran I., Entler S., Kočan M., Kohout M., Viererbl L., Mušálek R., Chráska T., Vayakis G. Development of Bismuth Hall sensors for ITER steady-state magnetic diagnostics. Fusion Eng. Des. 2017;123:690–694. doi: 10.1016/j.fusengdes.2017.05.142. DOI
Duran I., Entler S., Kohout M., Kočan M., Vayakis G. High magnetic field test of Bismuth Hall sensors for ITER steady-state magnetic diagnostic. Rev. Sci. Instrum. 2016;87:11D446. doi: 10.1063/1.4964435. PubMed DOI
Entler S., Duran I., Kocan M., Vayakis G. Investigation of linearity of the ITER outer vessel steady-state magnetic field sensors at high temperature. J. Instrum. 2017;12:C07007. doi: 10.1088/1748-0221/12/07/c07007. PubMed DOI
Entler S., Sebek J., Duran I., Vyborny K., Grover O., Kocan M., Vayakis G. High magnetic field test of the ITER outer vessel steady-state magnetic field Hall sensors at ITER relevant temperature. Rev. Sci. Instrum. 2018;89:10J112. doi: 10.1063/1.5038812. PubMed DOI
Entler S., Kocan M., Duran I., Vayakis G., Lucca F., Viganò F., Cantu R. Recent Improvement of the Design of the ITER Steady-State Magnetic Sensors. IEEE Trans. Plasma Sci. 2018;46:1276–1280. doi: 10.1109/tps.2018.2795243. DOI
Kocan M., Duran I., Entler S., Vayakis G., Agostinetti P., Brombin M., Carmona J.M., Gambetta G., Jirman T., Marconato N., et al. A steady-state magnetic sensor for ITER and beyond: Development and final design. Rev. Sci. Instrum. 2018;89:10J119. doi: 10.1063/1.5038871. PubMed DOI
Duran I., Entler S., Grover O., Bolshakova I., Výborný K., Kočan M., Jirman T., Vayakis G., Vasyliev O., Radishevskyi M., et al. Status of steady-state magnetic diagnostic for ITER and outlook for possible materials of Hall sensors for DEMO. Fusion Eng. Des. 2019;146:2397–2400. doi: 10.1016/j.fusengdes.2019.03.201. DOI
Entler S., Duran I., Kovarik K., Sladek P., Grover O., Vilemova M., Najman D., Kohout M., Sebek J., Vyborny K., et al. Temperature dependence of the Hall coefficient of sensitive layer materials considered for DEMO Hall sensors. Fusion Eng. Des. 2020;153:111454. doi: 10.1016/j.fusengdes.2020.111454. DOI
Hernandez F.A., Pereslavtsev P., Zhou G., Neuberger H., Rey J., Kang Q., Boccaccini L.V., Bubelis E., Moscato I., Dongiovanni D.N. An enhanced, near-term HCPB design as driver blanket for the EU DEMO. Fusion Eng. Des. 2019;146:1186–1191. doi: 10.1016/j.fusengdes.2019.02.037. DOI
Bolshakova I., Bulavin M., Kargin N., Kost Y., Kuech T., Kulikov S., Radishevskiy M., Shurygin1 F., Strikhanov M., Vasil’evskii I., et al. Metal Hall sensors for the new generation fusion reactors of DEMO scale. Nucl. Fusion. 2017;57:116042. doi: 10.1088/1741-4326/aa7867. DOI
Bolshakova I., Horelkin P., Kost Y., Moroz A., Mykhashchuk Y., Radishevskiy M., Shurigin F., Vasyliev O., Kuech T., Pavlyk B., et al. Nanofilm Materials for Devices of Magnetic Field Measurement in Radiation Environment; Proceedings of the IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET); Lviv-Slavske, Ukraine. 25–29 February 2020; DOI
Entler S., Duran I., Kocan M., Vayakis G., Kohout M., Sebek J., Sladek P., Grover O., Vyborny K. Prospects for the steady-state magnetic diagnostic based on antimony Hall sensors for future fusion power reactors. Fusion Eng. Des. 2019;146:526–530. doi: 10.1016/j.fusengdes.2019.01.013. DOI
Kovarik K., Entler S., Duran I., Eade T. Analysis of Transmutation of Candidate Sensitive Layer Materials of Hall Detectors under DEMO Like Neutron Fluxes. Fusion Eng. Des. 2020;155:111670. doi: 10.1016/j.fusengdes.2020.111670. DOI
Fischer U. Guidelines for Neutronic Analyses, EUROfusion Internal Document EFDA_D_2L8TR9. EUROfusion; Culham, UK: 2018.
Gilbert M.R., Sublet J.-C.C. Handbook of Activation, Transmutation, and Radiation Damage, Properties of the Elements Simulated, Using Fispact-Ii & Tendl-2015. CCFE; Abingdon, UK: 2016. Magnetic Fusion Plants, Ccfe-R(16)36.
Eade T. Calculation of in-VV and ex-VV SDDR, EUROfusion Internal Document EFDA_D_2MQPRC. EUROfusion; Culham, UK: 2019.
Sublet J.C., Eastwood J.W., Morgan J.G., Fleming M., Gilbert M.R. The FISPACT-II User Manual, CCFE-R(11) Issue 4. CCFE; Abingdon, UK: 2013.
Fawcett E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 1988;60:209–283. doi: 10.1103/revmodphys.60.209. DOI
Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G.K.H., Marks L.D. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 2020;152:074101. doi: 10.1063/1.5143061. PubMed DOI
Madsen G.K.H., Singh D.J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006;175:67–71. doi: 10.1016/j.cpc.2006.03.007. DOI
Weinzettl V., Adamek J., Bilkova P., Havlicek J., Panek R., Hron M., Bogar O., Bohm P., Casolari A., Cavalier J., et al. Constraints on conceptual design of diagnostics for the high magnetic field COMPASS-U tokamak with hot walls. Fusion Eng. Des. 2019;146:1703–1707. doi: 10.1016/j.fusengdes.2019.03.020. DOI