Assessment of Antimicrobic, Antivirotic and Cytotoxic Potential of Alginate Beads Cross-Linked by Bivalent Ions for Vaginal Administration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000495
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33513747
PubMed Central
PMC7910877
DOI
10.3390/pharmaceutics13020165
PII: pharmaceutics13020165
Knihovny.cz E-zdroje
- Klíčová slova
- alginate, antimicrobial activity, antiviral activity, bivalent ions, cross-linking, cytotoxicity, ionic gelation,
- Publikační typ
- časopisecké články MeSH
Antimicrobial agent abuse poses a serious threat for future pharmacotherapy, including vaginal administration. The solution can be found in simple polymeric systems with inherent antimicrobial properties without the need to incorporate drugs, for instance alginate beads cross-linked by bivalent ions. The main goal of the presented study was to provide improvement on the well-documented cytotoxicity of Cu2+ cross-linked alginate. Alginate beads were prepared by external ionotropic gelation by cross-linking with Cu2+, Ca2+ and Zn2+ ions, separately and in mixtures. Morphological properties, swelling capacity, ion release and efficacy against the most common vaginal pathogens (C. albicans, E. coli, E. faecalis and virus strain-human herpesvirus type 1) were evaluated. The prepared particles (particle size 1455.68 ± 18.71-1756.31 ± 16.58 µm) had very good sphericity (0.86 ± 0.04-0.97 ± 0.06). In mixture samples, Cu2+ hampered second ion loading, and was also released incompletely (18.75-44.8%) compared to the single ion Cu2+ sample (71.4%). Efficacy against the selected pathogens was confirmed in almost all samples. Although anticipating otherwise, ion mixture samples did not show betterment over a Cu2+ cross-linked sample in cytotoxicity-pathogen efficacy relation. However, the desired improvement was found in a single ion Zn2+ sample whose minimal inhibition concentrations against the pathogens (0.6-6.12 mM) were close to, or in the same mathematical order as, its toxic concentration of 50 (1.891 mM). In summary, these findings combined with alginate's biocompatibility and biodegradability give the combination solid potential in antimicrobial use.
Zobrazit více v PubMed
Mühlen S., Dersch P. Anti-virulence Strategies to Target Bacterial Infections. In: Stadler M., Dersch P., editors. How to Overcome the Antibiotic Crisis. Springer; Cham, Switzerland: 2016. pp. 147–183. PubMed DOI
Frieri M., Krishan K., Boutin A. Antibiotic resistance. J. Infect. Public Health. 2017;10:369–378. doi: 10.1016/j.jiph.2016.08.007. PubMed DOI
Ginjupalli K., Alla R., Shaw T., Tellapragada C., Gupta L.K., Upadhya P.N. Comparative evaluation of efficacy of Zinc oxide and Copper oxide nanoparticles as antimicrobial additives in alginate impression materials. Mater. Today Proc. 2018;5:16258–16266. doi: 10.1016/j.matpr.2018.05.117. DOI
Frígols B., Martí M., Salesa B., Hernandéz-Oliver C., Aartsad O., Ulset A.-S.T., Saetrom G., Aachmann F., Serrano-Aroca A. Graphene oxide in zinc alginate films: Antibacterial activity, cytotoxicity, zinc release, water sorption/diffusion, wettability and opacity. PLoS ONE. 2019;14:e0212819. doi: 10.1371/journal.pone.0212819. PubMed DOI PMC
Mary G., Bajpai S.K., Chand N. Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J. Appl. Polym. Sci. 2009;113:757–766. doi: 10.1002/app.29890. DOI
Pavelková M., Kubová K., Vysloužil J., Kejdušová M., Vetchý D., Celer V., Molinková D., Lobová D., Pechová A., Vysloužil J., et al. Biological effects of drug-free alginate beads cross-linked by copper ions prepared using external ionotropic gelation. AAPS PharmSciTech. 2017;18:1343–1354. doi: 10.1208/s12249-016-0601-4. PubMed DOI
Marković D., Zarubica A., Stojković N., Vasić M., Cakić M., Nikolić G. Alginates and similar exopolysaccharides in biomedical application and pharmacy: Controled delivery of drugs. Adv. Technol. 2016;5:39–52. doi: 10.5937/savteh1601039M. DOI
Lee K.Y., Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC
Ruvinov E., Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Adv. Drug Deliv. Rev. 2016;96:54–76. doi: 10.1016/j.addr.2015.04.021. PubMed DOI
Kurakula M., Rao G.K., Kiran V., Hasnain M.S., Nayak A.K. Alginate-Based Hydrogel Systems for Drug Releasing in Wound Healing. In: Nayak A.K., Hasnain M.S., editors. Alginates in Drug Delivery. 1st ed. Academic Press; Cambridge, MA, USA: 2020. pp. 323–358.
Schmid W., Picker-Fryer K.M. Tableting and tablet properties of alginates: Characterisation and potential for soft tableting. Eur. J. Pharm. Biopharm. 2009;72:165–172. doi: 10.1016/j.ejpb.2008.10.006. PubMed DOI
Sathyabama S., Ranjith Kumar M., Brunthadevi P., Vijayabharathi R., Brindha V. Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. LWT Food Sci. Technol. 2014;57:419–425. doi: 10.1016/j.lwt.2013.12.024. DOI
De Vos P., Lazarjani H.A., Poncelet D., Faas M.M. Polymers in cell encapsulation from an enveloped cell perspective. Adv. Drug Deliver. Rev. 2014;67:15–34. doi: 10.1016/j.addr.2013.11.005. PubMed DOI
Lim F., Sun A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210:908–910. doi: 10.1126/science.6776628. PubMed DOI
Roy P., Sahiwala A. Multiparticulate formulation approach to pulsatile drug delivery: Current perspective. J. Control. Rel. 2009;134:74–80. doi: 10.1016/j.jconrel.2008.11.011. PubMed DOI
Draget K.I., Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll. 2011;25:251–256. doi: 10.1016/j.foodhyd.2009.10.007. DOI
Tønnesen H.H., Karlsen J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002;28:621–630. doi: 10.1081/DDC-120003853. PubMed DOI
Szekalska M., Puciłowska A., Szymańska E., Ciosek P., Winnicka K. Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. Int. J. Polym. Sci. 2016;2016:7697031. doi: 10.1155/2016/7697031. DOI
Dulieu C., Poncelet D., Neufeld R.J. Encapsulation and Immobilization Techniques. In: Kühtreiber W.M., Lanza R.P., Chick W.L., editors. Cell Encapsulation Technology and Therapeutics. Birkhäuser; Boston, MA, USA: 1999. pp. 9–11. DOI
Haug A., Smidsrød O. The effect of divalent metals on the properties of alginate solutions II. comparison of different metal ions. Acta Chem. Scand. 1965;19:341–351. doi: 10.3891/acta.chem.scand.19-0341. DOI
Mørch Y.A., Donati I., Strand B.L., Skjåk-Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006;7:1471–1480. doi: 10.1021/bm060010d. PubMed DOI
Mørch Y.A., Qi M., Gundersen P.O.M., Formo K., Lacik I., Skjåk-Bræk G., Oberholzer J., Strand B.L. Binding and leakage of barium in alginate microbeads. J. Biomed. Mater. Res. Part A. 2012;100:2939–2947. doi: 10.1002/jbm.a.34237. PubMed DOI PMC
Wani A.L., Ara A., Usmani J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015;8:55–64. doi: 10.1515/intox-2015-0009. PubMed DOI PMC
Mazukhina S., Tereshchenko T., Drogobuzhskaya S., Pozhilenko V. The Speciation of Chemical Elements in Water and Their Possible Impact on Human Health; Proceedings of the 16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference); Tomsk, Russia. 21–26 July 2019; DOI
Leong J.Y., Lam W.H., Ho K.W., Voo W.P., Lee M.F.X., Lim H.P., Lim S.L., Tey B.T., Poncelet D., Chan E.S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology. 2016;24:44–60. doi: 10.1016/j.partic.2015.09.004. DOI
Cerciello A., Del Gaudio P., Granata V., Sala M., Aquino R.P., Russo P. Synergistic effect of divalent cations in improving technological properties of cross-linked alginate beads. Int. J. Biol. Macromol. 2017;101:100–106. doi: 10.1016/j.ijbiomac.2017.03.077. PubMed DOI
O’Gorman J., Humphreys H. Application of copper to prevent and control infection. Where are we now? J. Hosp. Infect. 2012;81:217–223. doi: 10.1016/j.jhin.2012.05.009. PubMed DOI
Vincent M., Hartemann P., Engels-Deutsch M. Antimicrobial applications of copper. Int. J. Hyg. Environ. Health. 2016;219:585–591. doi: 10.1016/j.ijheh.2016.06.003. PubMed DOI
Vincent M., Duval R.E., Hartemann P., Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 2018;124:1032–1046. doi: 10.1111/jam.13681. PubMed DOI
Shionoiri N., Sato T., Fujimori Y., Nakayama T., Nemoto M., Matsunaga T., Tanaka T. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. J. Biosci. Bioeng. 2012;113:580–586. doi: 10.1016/j.jbiosc.2011.12.006. PubMed DOI
Borkow G., Zhou S.S., Page T., Gabbay J. A novel anti-influenza copper oxide containing respiratory face mask. PLoS ONE. 2010;5:e11295. doi: 10.1371/journal.pone.0011295. PubMed DOI PMC
Pasquet J., Chevalier Y., Pelletier J., Couval E., Bouvier D., Bolzinger M.A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloid. Surf. A Physicochem. Eng. Aspects. 2014;457:263–274. doi: 10.1016/j.colsurfa.2014.05.057. DOI
Jones N., Ray B., Ranjit K.T., Manna A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008;279:71–76. doi: 10.1111/j.1574-6968.2007.01012.x. PubMed DOI
Atmaca S., Gül K., Ҫíҫek R. The effect of zinc on microbial growth. Turk. J. Med. Sci. 1998;28:595–597.
Boyd D., Li H., Tanner D.A., Towler M.R., Wall J.G. The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements. J. Mater. Sci. Mater. Med. 2006;17:489–494. doi: 10.1007/s10856-006-8930-6. PubMed DOI
Straccia M.C., d’Ayala G.G., Romano I., Laurienzo P. Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity. Carbohydr. Polym. 2015;125:103–112. doi: 10.1016/j.carbpol.2015.03.010. PubMed DOI
Zhang L., Jiang Y., Ding Y., Daskalakis N., Jeuken N., Povey M., O’Neill A.J., York D.W. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res. 2010;12:1625–1636. doi: 10.1007/s11051-009-9711-1. DOI
Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008;9:035004. doi: 10.1088/1468-6996/9/3/035004. PubMed DOI PMC
Gong Y., Han G., Zhang Y., Pan Y., Li X., Xia Y., Wu Y. Antifungal activity and cytotoxicity of zinc, calcium, or copper alginate fibers. Biol. Trace Elem. Res. 2012;148:415–419. doi: 10.1007/s12011-012-9388-7. PubMed DOI
Miller L.P., McCallan S.E.A. Fungicides, toxic action of metal ions to fungus spores. J. Agric. Food Chem. 1957;5:116–122. doi: 10.1021/jf60072a003. DOI
Wei Z., Burwinkel M., Pallissa C., Ephraim E., Schmidt M.F. Antiviral activity of zinc salts against transmissible gastroenteritis virus in vitro. Vet. Microbiol. 2012;160:468–472. doi: 10.1016/j.vetmic.2012.06.019. PubMed DOI PMC
Brus J., Urbanova M., Czernek J., Pavelkova M., Kubova K., Vyslouzil J., Abbrent S., Konefal R., Horsky J., Vetchy D., et al. Structure and dynamics of alginate gels cross-linked by polyvalent ions probed via solid state NMR spectroscopy. Biomacromolecules. 2017;18:2478–2488. doi: 10.1021/acs.biomac.7b00627. PubMed DOI
Smýkalová I., Horáček J., Hýbl M., Bjelková M., Pavelek M., Krulikovská T., Hampel D. Seed type identification by image analysis—Correlation of nutrients with size, shape and colour characteristics of seeds. Chem. Listy. 2011;105:138–145.
Rabišková M., Häring A., Minczingerová K., Havlásek M., Musilová P. Microcrystalline cellulose in oral dosage forms. Chem. Listy. 2007;101:70–77.
Younis M.K., Tareq A.Z., Kamal I.M. Optimization of Swelling, Drug Loading and Release from Natural Polymer Hydrogels; Proceedings of the IOP Conference Series: Materials Science and Engineering, International Conference on Materials Engineering and Science 8; Istanbul, Turkey. 8–9 August 2018; Bristol, UK: IOP Science; 2018. DOI
European Pharmacopoeia Commision . European Pharmacopoeia. 10th ed. Council of Europe; Strasbourg, France: 2020. Buffer Solutions. Supplement 8.0. Chapter 4.1.3.
Caillouette J.C., Sharp C.F., Jr., Zimmerman G.J., Roy S. Vaginal pH as a marker for bacterial pathogens and menopausal status. Am. J. Obstet. Gynecol. 1997;176:1270–1277. doi: 10.1016/S0002-9378(97)70345-4. PubMed DOI
Latronico T., Pati I., Ciavarella R., Fasano A., Mengoni F., Lichtner M., Vullo V., Mastroianni C.M., Liuzzi G.M. In vitro effect of antiretroviral drugs on cultured primary astrocytes: Analysis of neurotoxicity and matrix metalloproteinase inhibition. J. Neurochem. 2018;144:271–284. doi: 10.1111/jnc.14269. PubMed DOI
Palmeira-de-Oliveira R., Palmeira-de-Oliveira A., Martinez-de-Oliveira J. New strategies for local treatment of vaginal infections. Adv. Drug Deliver. Rev. 2015;92:105–122. doi: 10.1016/j.addr.2015.06.008. PubMed DOI
Agulhon P., Robitzer M., David L., Quignard F. Structural regime identification in ionotropic alginate gels: Influence of the cation nature and alginate structure. Biomacromolecules. 2012;13:215–220. doi: 10.1021/bm201477g. PubMed DOI
Aslani P., Kennedy R.A. Effect of gelation conditions and dissollution media on the release of paracetamol from alginate gel beads. J. Microencapsul. 1996;13:601–614. doi: 10.3109/02652049609026044. PubMed DOI
Yokoyama F., Achife C.E., Takahira K., Yamashita Y., Monobe K., Kusano F., Nishi K. Morphologies of oriented alginate gels crosslinked with various divalent metal ions. J. Macromol. Sci. Part B. 1992;31:463–483. doi: 10.1080/00222349208215465. DOI
Deasy P.B., Law M.F.L. Use of extrusion-spheronization to develop an improved oral dosage form of indomethacin. Int. J. Pharm. 1997;148:201–209. doi: 10.1016/S0378-5173(96)04846-6. DOI
Lyn M.E., Ying D.Y. Drying model for calcium alginate beads. Ind. Eng. Chem. Res. 2010;49:1986–1990. doi: 10.1021/ie901451m. DOI
Rodrigues J.R., Lagoa R. Copper Ions Binding in Cu-Alginate Gelation. J. Carbohydr. Chem. 2006;25:219. doi: 10.1080/07328300600732956. DOI
Velings N.M., Mestdagh M.M. Physico-chemical properties of alginate gel beads. Polym. Gels Netw. 1995;3:311–330. doi: 10.1016/0966-7822(94)00043-7. DOI
Chowdary K.P.R., Rao Y.S. Mucoadhesive microspheres for controlled drug delivery. Biol. Pharm. Bull. 2004;27:1717–1724. doi: 10.1248/bpb.27.1717. PubMed DOI
Urbanova M., Pavelkova M., Czernek J., Kubova K., Vyslouzil J., Pechova A., Molinkova D., Vyslouzil J., Vetchy D., Brus J. Interaction pathways and structure−chemical transformations of alginate gels in physiological environments. Biomacromolecules. 2019;20:4158–4170. doi: 10.1021/acs.biomac.9b01052. PubMed DOI
Bajpai S.K., Sharma S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 2004;59:129–140. doi: 10.1016/j.reactfunctpolym.2004.01.002. DOI
Eiselt P., Rowley J.A., Mooney D.J. MRS Proceedings. Cambridge University Press; Cambridge, UK: 1998. PEG Cross-Linked Alginate Hydrogels with Controlled Mechanical Properties; pp. 37–42.
Baloglu E., Bernkop-Schnürch A., Karavana S.Y., Senyigit Z.A. Strategies to prolong the intravaginal residence time of drug delivery systems. J. Pharm. Pharm. Sci. 2009;12:312–336. doi: 10.18433/J3HP41. PubMed DOI
Esmaeili L., Perez M.G., Jafari M., Paquin J., Ispas-Szabo P., Pop V., Andruh M., Byers J., Mateescu M.A. Copper complexes for biomedical applications: Structural in-sights, antioxidant activity and neuron compatibility. J. Inorg. Biochem. 2019;192:87–97. doi: 10.1016/j.jinorgbio.2018.12.010. PubMed DOI
Wataha J.C., Hanks C.T., Craig R.G. In vitro effect of metal ions on cellular metabolism and the correlation between these effects and the uptake of the ions. J. Biomed. Mater. Res. 1994;28:427–433. doi: 10.1002/jbm.820280404. PubMed DOI
Kass G.E., Orrenius S. Calcium signaling and cytotoxicity. Environ. Health Perspect. 1999;107:25–35. doi: 10.1289/ehp.99107s125. PubMed DOI PMC
Iismaa S.E., Kaidonis X., Nicks A.M., Bogush N., Kikuchi K., Naqvi N., Harvey R.P., Husain A., Graham R.M. Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen. Med. 2018;3:1–20. doi: 10.1038/s41536-018-0044-5. PubMed DOI PMC
Xing J.Z., Zhu L., Jackson J.A., Gabos S., Sun X.J., Wang X., Xu X. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem. Res. Toxicol. 2005;18:154–161. doi: 10.1021/tx049721s. PubMed DOI
Wu J., Wang L., He J., Zhu C. In vitro cytotoxicity of Cu2+, Zn2+, Ag+ and their mixtures on primary human endometrial epithelial cells. Contraception. 2012;85:509–518. doi: 10.1016/j.contraception.2011.09.016. PubMed DOI
Hussain A., Ahsan F. The vagina as a route for systemic drug delivery. J. Control. Release. 2005;103:301–313. doi: 10.1016/j.jconrel.2004.11.034. PubMed DOI
Vermani K., Garg S. The scope and potential of vaginal drug delivery. Pharm. Sci. Technol. Today. 2000;3:359–364. doi: 10.1016/S1461-5347(00)00296-0. PubMed DOI
Andrews J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001;48:5–16. doi: 10.1093/jac/48.suppl_1.5. PubMed DOI
Schwartz J.A., Olarte K.T., Michalek J.L., Jandu G.S., Michel S.L.J., Bruno V.M. Regulation of copper toxicity by Candida albicans GPA2. Eukaryot. Cell. 2013;12:954–961. doi: 10.1128/EC.00344-12. PubMed DOI PMC
Qin Y., Zhu C., Chen J., Liang D., Wo G. Absorption and release of zinc and copper ions by chitosan fibers. J. Appl. Polym. Sci. 2007;105:527–532. doi: 10.1002/app.26271. DOI
Sagripanti J.L., Routson L.B., Bonifacino A.C., Lytle C.D. Mechanism of copper-mediated inactivation of herpes simplex virus. Antimicrob. Agents Chemother. 1997;41:812–817. doi: 10.1128/AAC.41.4.812. PubMed DOI PMC
Kümel G., Schrader S., Zentgraf H., Daus H., Brendel M. The mechanism of the antiherpetic activity of zinc sulphate. J. Gen. Virol. 1990;71:2989–2997. doi: 10.1099/0022-1317-71-12-2989. PubMed DOI
Arens M., Travis S. Zinc salts inactivate clinical isolates of Herpes simplex virus In vitro. J. Clin. Microbiol. 2000;38:1758–1762. doi: 10.1128/JCM.38.5.1758-1762.2000. PubMed DOI PMC
Panteva M., Varadinova T., Turel I. Effect of copper acyclovir complexes on Herpes simplex virus type 1 and type 2 (HHV-1, HSV-2) infection in cultured cells. Met. Based Drugs. 1998;5:19–23. doi: 10.1155/MBD.1998.19. PubMed DOI PMC
Kydd J.H., Townsend H.G.G., Hannant D. The equine immune response to equine herpesvirus-1: The virus and its vaccines. Vet. Immunol. Immunopathol. 2006;111:15–30. doi: 10.1016/j.vetimm.2006.01.005. PubMed DOI
Lodmell D.L., Niwa A., Hayashi K., Notkins A.L. Prevention of cell-to-cell spread of herpes simplex virus by leukocytes. J. Exp. Med. 1973;137:706–720. doi: 10.1084/jem.137.3.706. PubMed DOI PMC