Cytotoxic and Genotoxic Effects of Cyanobacterial and Algal Extracts-Microcystin and Retinoic Acid Content
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P1-0245
Javna Agencija za Raziskovalno Dejavnost RS
18-15199S
Grantová Agentura České Republiky
LO1214
Ministry of Education, Youth and Sports of the Czech Republic
STSM-ES1105-24073
European Cooperation in Science and Technology
LM2011028
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33540511
PubMed Central
PMC7912913
DOI
10.3390/toxins13020107
PII: toxins13020107
Knihovny.cz E-zdroje
- Klíčová slova
- algae, chemical analysis, complex mixtures, cyanobacteria, cyanotoxins, cytotoxicity, extracts, genotoxicity, microcystins, retinoic acids,
- MeSH
- alkaloidy izolace a purifikace toxicita MeSH
- buňky Hep G2 MeSH
- Chlorophyta metabolismus MeSH
- chromatografie kapalinová MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- kometový test MeSH
- lidé MeSH
- mikrocystiny izolace a purifikace toxicita MeSH
- mikrojaderné testy MeSH
- mikrojádra chromozomálně defektní chemicky indukované MeSH
- poškození DNA * MeSH
- sinice metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- toxiny kmene Cyanobacteria MeSH
- tretinoin izolace a purifikace toxicita MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alkaloidy MeSH
- cylindrospermopsin MeSH Prohlížeč
- microcystin MeSH Prohlížeč
- mikrocystiny MeSH
- toxiny kmene Cyanobacteria MeSH
- tretinoin MeSH
In the last decade, it has become evident that complex mixtures of cyanobacterial bioactive substances, simultaneously present in blooms, often exert adverse effects that are different from those of pure cyanotoxins, and awareness has been raised on the importance of studying complex mixtures and chemical interactions. We aimed to investigate cytotoxic and genotoxic effects of complex extracts from laboratory cultures of cyanobacterial species from different orders (Cylindrospermopsis raciborskii, Aphanizomenon gracile, Microcystis aeruginosa, M. viridis, M. ichtyoblabe, Planktothrix agardhii, Limnothrix redekei) and algae (Desmodesmus quadricauda), and examine possible relationships between the observed effects and toxin and retinoic acid (RA) content in the extracts. The cytotoxic and genotoxic effects of the extracts were studied in the human hepatocellular carcinoma HepG2 cell line, using the MTT assay, and the comet and cytokinesis-block micronucleus (cytome) assays, respectively. Liquid chromatography electrospray ionization mass spectrometry (LC/ESI-MS) was used to detect toxins (microcystins (MC-LR, MC-RR, MC-YR) and cylindrospermopsin) and RAs (ATRA and 9cis-RA) in the extracts. Six out of eight extracts were cytotoxic (0.04-2 mgDM/mL), and five induced DNA strand breaks at non-cytotoxic concentrations (0.2-2 mgDM/mL). The extracts with genotoxic activity also had the highest content of RAs and there was a linear association between RA content and genotoxicity, indicating their possible involvement; however further research is needed to identify and confirm the compounds involved and to elucidate possible genotoxic effects of RAs.
Zobrazit více v PubMed
Buratti F.M., Manganelli M., Vichi S., Stefanelli M., Scardala S., Testai E., Funari E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017;91:1049–1130. doi: 10.1007/s00204-016-1913-6. PubMed DOI
Huisman J., Codd G.A., Paerl H.W., Ibelings B.W., Verspagen J.M.H., Visser P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018;16:471–483. doi: 10.1038/s41579-018-0040-1. PubMed DOI
Scholz S.N., Esterhuizen-Londt M., Pflugmacher S. Rise of toxic cyanobacterial blooms in temperate freshwater lakes: Causes, correlations and possible countermeasures. Toxicol. Environ. Chem. 2017;99:543–577. doi: 10.1080/02772248.2016.1269332. DOI
Codd G.A., Meriluoto J., Metcalf J.S. Introduction: Cyanobacteria, Cyanotoxins, Their Human Impact, and Risk Management. In: Meriluoto J., Spoof L., Codd G.A., editors. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons, Ltd.; Chichester, UK: 2017. pp. 3–8.
Lee J., Rai P.K., Jeon Y.J., Kim K.-H., Kwon E.E. The role of algae and cyanobacteria in the production and release of odorants in water. Environ. Pollut. 2017;227:252–262. doi: 10.1016/j.envpol.2017.04.058. PubMed DOI
Svirčev Z., Drobac D., Tokodi N., Mijović B., Codd G.A., Meriluoto J. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch. Toxicol. 2017;91:621–650. doi: 10.1007/s00204-016-1921-6. PubMed DOI
Chorus I. Introduction: Cyanotoxins—Research for Environmental Safety and Human Health. In: Chorus I., editor. Cyanotoxins: Occurrence, Causes, Consequences. Springer; Berlin/Heidelberg, Germany: 2001.
Bláhová L., Babica P., Adamovský O., Kohoutek J., Maršálek B., Bláha L. Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environ. Chem. Lett. 2008;6:223–227. doi: 10.1007/s10311-007-0126-x. DOI
Bláhová L., Babica P., Maršálková E., Maršálek B., Bláha L. Concentrations and Seasonal Trends of Extracellular Microcystins in Freshwaters of the Czech Republic—Results of the National Monitoring Program. CLEAN—Soil Air Water. 2007;35:348–354. doi: 10.1002/clen.200700010. DOI
Žegura B., Štraser A., Filipič M. Genotoxicity and potential carcinogenicity of cyanobacterial toxins—A review. Mutat. Res./Rev. Mutat. Res. 2011;727:16–41. doi: 10.1016/j.mrrev.2011.01.002. PubMed DOI
Svirčev Z., Lalić D., Bojadžija Savić G., Tokodi N., Drobac Backović D., Chen L., Meriluoto J., Codd G.A. Global Geographical and Historical Overview of Cyanotoxin Distribution and Cyanobacterial Poisonings. Volume 93. Springer; Berlin/Heidelberg, Germany: 2019. PubMed
Zegura B. An Overview of the Mechanisms of Microcystin-LR Genotoxicity and Potential Carcinogenicity. Mini Rev. Med. Chem. 2016;16:1042–1062. doi: 10.2174/1389557516666160308141549. PubMed DOI
Bouaïcha N., Miles C.O., Beach D.G., Labidi Z., Djabri A., Benayache N.Y., Nguyen-Quang T. toxins Structural Diversity, Characterization and Toxicology of Microcystins. Toxins. 2019;11:714. doi: 10.3390/toxins11120714. PubMed DOI PMC
IARC . Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins. International Agency for Research on Cancer; Lyon, France: 2010. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 94.
Runnegar M.T., Xie C., Snider B.B., Wallace G.A., Weinreb S.M., Kuhlenkamp J. In Vitro Hepatotoxicity of the Cyanobacterial Alkaloid Cylindrospermopsin and Related Synthetic Analogues. Toxicol. Sci. 2002;67:81–87. doi: 10.1093/toxsci/67.1.81. PubMed DOI
Pichardo S., Cameán A.M., Jos A. In vitro toxicological assessment of cylindrospermopsin: A review. Toxins. 2017;9:402. doi: 10.3390/toxins9120402. PubMed DOI PMC
Hrouzek P., Kapuścik A., Vacek J., Voráčová K., Paichlová J., Kosina P., Voloshko L., Ventura S., Kopecký J. Cytotoxicity evaluation of large cyanobacterial strain set using selected human and murine in vitro cell models. Ecotoxicol. Environ. Saf. 2016;124:177–185. doi: 10.1016/j.ecoenv.2015.10.020. PubMed DOI
Smutná M., Babica P., Jarque S., Hilscherová K., Maršálek B., Haeba M., Bláha L. Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins. Toxicon. 2014;79:11–18. doi: 10.1016/j.toxicon.2013.12.009. PubMed DOI
Sieroslawska A. Assessment of the mutagenic potential of cyanobacterial extracts and pure cyanotoxins. Toxicon. 2013;74:76–82. doi: 10.1016/j.toxicon.2013.07.029. PubMed DOI
Ding W.-X., Shen H.-M., Zhu H.-G., Lee B.-L., Ong C.-N. Genotoxicity of microcystic cyanobacteria extract of a water source in China. Mutat. Res. Toxicol. Environ. Mutagen. 1999;442:69–77. doi: 10.1016/S1383-5718(99)00064-9. PubMed DOI
Bláha L., Babica P., Hilscherová K., Upham B.L. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts—Indications of novel tumor-promoting cyanotoxins? Toxicon. 2010;55:126–134. doi: 10.1016/j.toxicon.2009.07.009. PubMed DOI PMC
Funari E., Testai E. Human Health Risk Assessment Related to Cyanotoxins Exposure. Crit. Rev. Toxicol. 2008;38:97–125. doi: 10.1080/10408440701749454. PubMed DOI
Jonas A., Scholz S., Fetter E., Sychrova E., Novakova K., Ortmann J., Benisek M., Adamovsky O., Giesy J.P., Hilscherova K. Endocrine, teratogenic and neurotoxic effects of cyanobacteria detected by cellular in vitro and zebrafish embryos assays. Chemosphere. 2015;120:321–327. doi: 10.1016/j.chemosphere.2014.07.074. PubMed DOI
Priebojová J., Hilscherová K., Procházková T., Sychrová E., Smutná M. Intracellular and extracellular retinoid-like activity of widespread cyanobacterial species. Ecotoxicol. Environ. Saf. 2018;150:312–319. doi: 10.1016/j.ecoenv.2017.12.048. PubMed DOI
Javůrek J., Sychrová E., Smutná M., Bittner M., Kohoutek J., Adamovský O., Nováková K., Smetanová S., Hilscherová K. Retinoid compounds associated with water blooms dominated by Microcystis species. Harmful Algae. 2015;47:116–125. doi: 10.1016/j.hal.2015.06.006. DOI
Pipal M., Priebojova J., Koci T., Blahova L., Smutna M., Hilscherova K. Field cyanobacterial blooms producing retinoid compounds cause teratogenicity in zebra fi sh embryos. Chemosphere. 2020;241:125061. doi: 10.1016/j.chemosphere.2019.125061. PubMed DOI
Sehnal L., Procházková T., Smutná M., Kohoutek J., Lepšová-Skácelová O., Hilscherová K. Widespread occurrence of retinoids in water bodies associated with cyanobacterial blooms dominated by diverse species. Water Res. 2019;156:136–147. doi: 10.1016/j.watres.2019.03.009. PubMed DOI
Kaya K., Sano T. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2017. Cyanobacterial Retinoids; pp. 173–178.
Alakhras R.S., Stephanou G., Demopoulos N.A., Nikolaropoulos S.S. Genotoxicity of all-trans retinoic acid (ATRA) and its steroidal analogue EA-4 in human lymphocytes and mouse cells in vitro. Cancer Lett. 2011;306:15–26. doi: 10.1016/j.canlet.2011.02.010. PubMed DOI
Balaban F., Ates-Alagoz Z., Buyukbingol E., Iscan M. Genotoxicity studies on benzimidazole retinoids. Pharmazie. 2005;60:861–868. PubMed
de Almeida Vasconcelos Fonseca E.M. All-trans and 9-cis retinoic acids, retinol and -carotene chemopreventive activities during the initial phases of hepatocarcinogenesis involve distinct actions on glutathione S-transferase positive preneoplastic lesions remodeling and DNA damage. Carcinogenesis. 2005;26:1940–1946. doi: 10.1093/carcin/bgi161. PubMed DOI
Hamid R., Rotshteyn Y., Rabadi L., Parikh R., Bullock P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol. Vitr. 2004;18:703–710. doi: 10.1016/j.tiv.2004.03.012. PubMed DOI
Díez-Quijada L., Hercog K., Štampar M., Filipič M., Cameán A.M., Jos Á., Žegura B. Genotoxic Effects of Cylindrospermopsin, Microcystin-LR and Their Binary Mixture in Human Hepatocellular Carcinoma (HepG2) Cell Line. Toxins. 2020;12:778. doi: 10.3390/toxins12120778. PubMed DOI PMC
Hercog K., Maisanaba S., Filipič M., Jos Á., Cameán A.M., Žegura B. Genotoxic potential of the binary mixture of cyanotoxins microcystin-LR and cylindrospermopsin. Chemosphere. 2017;189:319–329. doi: 10.1016/j.chemosphere.2017.09.075. PubMed DOI
Hercog K., Maisanaba S., Filipič M., Sollner-Dolenc M., Kač L., Žegura B. Genotoxic activity of bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular carcinoma (HepG2) cells. Sci. Total Environ. 2019;687:267–276. doi: 10.1016/j.scitotenv.2019.05.486. PubMed DOI
Westerink W.M.A., Schoonen W.G.E.J. Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol. Vitr. 2007;21:1581–1591. doi: 10.1016/j.tiv.2007.05.014. PubMed DOI
Ma M., Pi F., Wang J., Ji J., Sun X. New insights into cytotoxicity induced by microcystin-LR, estradiol, and ractopamine with mathematical models: Individual and combined effects. Chemosphere. 2017;168:223–233. doi: 10.1016/j.chemosphere.2016.10.004. PubMed DOI
Lundqvist J., Pekar H., Oskarsson A. Microcystins activate nuclear factor erythroid 2-related factor 2 (Nrf2) in human liver cells in vitro—Implications for an oxidative stress induction by microcystins. Toxicon. 2017;126:47–50. doi: 10.1016/j.toxicon.2016.12.012. PubMed DOI
Al-Sheddi E.S., Al-Oqail M.M., Saquib Q., Siddiqui M.A., Musarrat J., Al-Khedhairy A.A., Farshori N.N. Novel All Trans-Retinoic Acid Derivatives: Cytotoxicity, Inhibition of Cell Cycle Progression and Induction of Apoptosis in Human Cancer Cell Lines. Molecules. 2015;20:8181–8197. doi: 10.3390/molecules20058181. PubMed DOI PMC
Fang S., Hu C., Xu L., Cui J., Tao L., Gong M., Wang Y., He Y., He T., Bi Y. All-trans-retinoic acid inhibits the malignant behaviors of hepatocarcinoma cells by regulating autophagy. Am. J. Transl. Res. 2020;12:6793. PubMed PMC
Um S.-J., Sin H.-S., Han H.-S., Kwon Y.-J., Kim E.-J., Park S.-H., Kim S.-Y., Bae T.-S., Park J.-S., Rho Y.-S. Potent cytotoxic effects of novel retinamide derivatives in ovarian cancer cells. Biol. Pharm. Bull. 2003;26:1412–1417. doi: 10.1248/bpb.26.1412. PubMed DOI
Abramsson-Zetterberg L., Sundh U.B., Mattsson R. Cyanobacterial extracts and microcystin-LR are inactive in the micronucleus assay in vivo and in vitro. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2010;699:5–10. doi: 10.1016/j.mrgentox.2010.04.001. PubMed DOI
Scarlett K.R., Kim S., Lovin L.M., Chatterjee S., Scott J.T., Brooks B.W. Global scanning of cylindrospermopsin: Critical review and analysis of aquatic occurrence, bioaccumulation, toxicity and health hazards. Sci. Total Environ. 2020;738:139807. doi: 10.1016/j.scitotenv.2020.139807. PubMed DOI PMC
Díez-Quijada L., Prieto A.I., Guzmán-Guillén R., Jos A., Cameán A.M. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: A review. Food Chem. Toxicol. 2019;125:106–132. doi: 10.1016/j.fct.2018.12.042. PubMed DOI
Žegura B., Sedmak B., Filipič M. Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon. 2003;41:41–48. doi: 10.1016/S0041-0101(02)00207-6. PubMed DOI
Žegura B., Filipič M. Optimization in Drug Discovery. Humana Press; Totowa, NJ, USA: 2004. Application of In Vitro Comet Assay for Genotoxicity Testing; pp. 301–313.
Palus J., Dziubałtowska E., Stańczyk M., Lewińska D., Mankiewicz-Boczek J., Izydorczyk K., Bonisławska A., Jurczak T., Zalewski M., Wąsowicz W. Biomonitoring Of Cyanobacterial Blooms in Polish Water Reservoir And The Cytotoxicity and Genotoxicity Of Selected Cyanobacterial Extracts. Int. J. Occup. Med. Environ. Health. 2007;20:48–56. doi: 10.2478/v10001-007-0008-2. PubMed DOI
Tice R.R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J.C., Sasaki Y.F. Proceedings of the Environmental and Molecular Mutagenesis. Volume 35. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2000. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing; pp. 206–221. PubMed
OECD . OECD Guideline for the Testing of Chemicals. OECD; Paris, France: 2016. Test No. 487: In Vitro Mammalian Cell Micronucleus Test.
Štraser A., Filipič M., Žegura B. Genotoxic effects of the cyanobacterial hepatotoxin cylindrospermopsin in the HepG2 cell line. Arch. Toxicol. 2011;85:1617–1626. doi: 10.1007/s00204-011-0716-z. PubMed DOI
Fenech M. The in vitro micronucleus technique. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2000;455:81–95. doi: 10.1016/S0027-5107(00)00065-8. PubMed DOI