• This record comes from PubMed

Explore the sludge stabilization process in sludge drying bed by modeling study from mesocosm experiments

. 2021 Apr ; 195 () : 110837. [epub] 20210205

Language English Country Netherlands Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Sludge drying bed (SDB) treatment is a valuable alternative to conventional sludge treatment methods. However, changes in sludge hydrotexture during dewatering present a barrier for direct modeling of the SDB process. This study proposes a modeling strategy to simulate the sludge stabilization process in SDB treatment by separating sludge dewatering and sludge solids stabilization into independent processes. Two cell decay theories widely used by activated sludge models (ASM), death-regeneration concept and endogenous respiration theory, are compared to describe the biokinetic processes of sludge digestion. Both cell decay theories are found to adequately describe effluent total COD, NH4-N, NO3-N, and sludge layer composition, but have pronounced differences in describing effluent COD compositions. Results show that natural aeration does not maintain adequate aerobic/anoxic sludge digestion within the sludge layer to fully nitrify NH4-N released by cell decay. Results also indicate that the kinetics of sludge digestion are adaptable over time, indicating the need to adopt lumped values for biokinetic simulations. While lowered sludge dewatering rates (outflow) can increase biodegradable COD for cell metabolism, increased sludge loading rates (inflow) lead to higher effluent COD and NH4-N concentrations. Contrary to conventional judgement, this study demonstrates the merit of sludge layer formation to reduce leaching loss of biodegradable COD. Overall, the proposed modeling strategy is proven capable of simulating deposited sludge digestion processes in an SDB.

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...