Structurally Redesigned Bioorthogonal Reagents for Mitochondria-Specific Prodrug Activation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33554213
PubMed Central
PMC7851953
DOI
10.1021/jacsau.0c00053
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The development of abiotic chemical reactions that can be performed in an organelle-specific manner can provide new opportunities in drug delivery and cell and chemical biology. However, due to the complexity of the cellular environment, this remains a significant challenge. Here, we introduce structurally redesigned bioorthogonal tetrazine reagents that spontaneously accumulate in mitochondria of live mammalian cells. The attributes leading to their efficient accumulation in the organelle were optimized to include the right combination of lipophilicity and positive delocalized charge. The best performing mitochondriotropic tetrazines enable subcellular chemical release of TCO-caged compounds as we show using fluorogenic substrates and mitochondrial uncoupler niclosamide. Our work demonstrates that a shrewd redesign of common bioorthogonal reagents can lead to their transformation into organelle-specific probes, opening the possibility to activate prodrugs and manipulate biological processes at the subcellular level by using purely chemical tools.
Zobrazit více v PubMed
Row R. D.; Prescher J. A. Constructing New Bioorthogonal Reagents and Reactions. Acc. Chem. Res. 2018, 51 (5), 1073–1081. 10.1021/acs.accounts.7b00606. PubMed DOI PMC
Sletten E. M.; Bertozzi C. R. Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angew. Chem., Int. Ed. 2009, 48 (38), 6974–6998. 10.1002/anie.200900942. PubMed DOI PMC
Patterson D. M.; Nazarova L. A.; Prescher J. A. Finding the Right (Bioorthogonal) Chemistry. ACS Chem. Biol. 2014, 9 (3), 592–605. 10.1021/cb400828a. PubMed DOI
Spicer C. D.; Pashuck E. T.; Stevens M. M. Achieving Controlled Biomolecule-Biomaterial Conjugation. Chem. Rev. 2018, 118 (16), 7702–7743. 10.1021/acs.chemrev.8b00253. PubMed DOI PMC
Boutureira O.; Bernardes G. J. L. Advances in Chemical Protein Modification. Chem. Rev. 2015, 115 (5), 2174–2195. 10.1021/cr500399p. PubMed DOI
McKay C. S.; Finn M. G. Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation. Chem. Biol. 2014, 21 (9), 1075–1101. 10.1016/j.chembiol.2014.09.002. PubMed DOI PMC
Debets M. F.; van Hest J. C. M.; Rutjes F. P. J. T. Bioorthogonal labelling of biomolecules: new functional handles and ligation methods. Org. Biomol. Chem. 2013, 11 (38), 6439–6455. 10.1039/c3ob41329b. PubMed DOI
Takaoka Y.; Ojida A.; Hamachi I. Protein Organic Chemistry and Applications for Labeling and Engineering in Live-Cell Systems. Angew. Chem., Int. Ed. 2013, 52 (15), 4088–4106. 10.1002/anie.201207089. PubMed DOI
Borrmann A.; van Hest J. C. M. Bioorthogonal chemistry in living organisms. Chem. Sci. 2014, 5 (6), 2123–2134. 10.1039/c3sc52768a. DOI
Gordon C. G.; Bertozzi C. R.. In Vivo Applications of Bioorthogonal Chemistries. In Chemoselective and Bioorthogonal Ligation Reactions; Algar W. R.; Dawson P. E.; Medintz I. L., Eds.; WILEY-VCH Verlag GmbH & Co. KGaA, 2017.
Logan A.; Pell V. R.; Shaffer K. J.; Evans C.; Stanley N. J.; Robb E. L.; Prime T. A.; Chouchani E. T.; Cocheme H. M.; Fearnley I. M.; Vidoni S.; James A. M.; Porteous C. M.; Partridge L.; Krieg T.; Smith R. A.; Murphy M. P. Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry. Cell Metab. 2016, 23 (2), 379–385. 10.1016/j.cmet.2015.11.014. PubMed DOI PMC
Tomas-Gamasa M.; Martinez-Calvo M.; Couceiro J. R.; Mascarenas J. L. Transition metal catalysis in the mitochondria of living cells. Nat. Commun. 2016, 7, 12538.10.1038/ncomms12538. PubMed DOI PMC
Wang H.; Li W. G.; Zeng K.; Wu Y. J.; Zhang Y.; Xu T. L.; Chen Y. Photocatalysis Enables Visible-Light Uncaging of Bioactive Molecules in Live Cells. Angew. Chem., Int. Ed. 2019, 58 (2), 561–565. 10.1002/anie.201811261. PubMed DOI
Xue Z.; Zhu R.; Wang S.; Li J.; Han J.; Liu J.; Han S. Organelle-Directed Staudinger Reaction Enabling Fluorescence-on Resolution of Mitochondrial Electropotentials via a Self-Immolative Charge Reversal Probe. Anal. Chem. 2018, 90 (4), 2954–2962. 10.1021/acs.analchem.7b05465. PubMed DOI
Zheng Y.; Ji X.; Yu B.; Ji K.; Gallo D.; Csizmadia E.; Zhu M.; Choudhury M. R.; De La Cruz L. K. C.; Chittavong V.; Pan Z.; Yuan Z.; Otterbein L. E.; Wang B. Enrichment-triggered prodrug activation demonstrated through mitochondria-targeted delivery of doxorubicin and carbon monoxide. Nat. Chem. 2018, 10, 787–794. 10.1038/s41557-018-0055-2. PubMed DOI PMC
Siegl S. J.; Dzijak R.; Vazquez A.; Pohl R.; Vrabel M. The discovery of pyridinium 1,2,4-triazines with enhanced performance in bioconjugation reactions. Chem. Sci. 2017, 8 (5), 3593–3598. 10.1039/C6SC05442K. PubMed DOI PMC
Zheng N.; Tsai H. N.; Zhang X.; Shedden K.; Rosania G. R. The subcellular distribution of small molecules: a meta-analysis. Mol. Pharmaceutics 2011, 8 (5), 1611–1618. 10.1021/mp200093z. PubMed DOI PMC
Rosania G. R. Supertargeted chemistry: identifying relationships between molecular structures and their sub-cellular distribution. Curr. Top. Med. Chem. 2003, 3 (6), 659–685. 10.2174/1568026033452410. PubMed DOI
Louzoun-Zada S.; Jaber Q. Z.; Fridman M. Guiding Drugs to Target-Harboring Organelles: Stretching Drug-Delivery to a Higher Level of Resolution. Angew. Chem., Int. Ed. 2019, 58 (44), 15584–15594. 10.1002/anie.201906284. PubMed DOI
Friedman J. R.; Nunnari J. Mitochondrial form and function. Nature 2014, 505 (7483), 335–343. 10.1038/nature12985. PubMed DOI PMC
Vyas S.; Zaganjor E.; Haigis M. C. Mitochondria and Cancer. Cell 2016, 166 (3), 555–566. 10.1016/j.cell.2016.07.002. PubMed DOI PMC
Chen Z. P.; Li M.; Zhang L. J.; He J. Y.; Wu L.; Xiao Y. Y.; Duan J. A.; Cai T.; Li W. D. Mitochondria-targeted drug delivery system for cancer treatment. J. Drug Target. 2016, 24 (6), 492–502. 10.3109/1061186X.2015.1108325. PubMed DOI
Suomalainen A.; Battersby B. J. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat. Rev. Mol. Cell Biol. 2018, 19 (2), 77–92. 10.1038/nrm.2017.66. PubMed DOI
Shpilka T.; Haynes C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 2018, 19 (2), 109–120. 10.1038/nrm.2017.110. PubMed DOI
Vafai S. B.; Mootha V. K. Mitochondrial disorders as windows into an ancient organelle. Nature 2012, 491 (7424), 374–383. 10.1038/nature11707. PubMed DOI
Rin Jean S.; Tulumello D. V.; Wisnovsky S. P.; Lei E. K.; Pereira M. P.; Kelley S. O. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem. Biol. 2014, 9 (2), 323–333. 10.1021/cb400821p. PubMed DOI
Murphy M. P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta, Bioenerg. 2008, 1777 (7–8), 1028–1031. 10.1016/j.bbabio.2008.03.029. PubMed DOI
Battogtokh G.; Choi Y. S.; Kang D. S.; Park S. J.; Shim M. S.; Huh K. M.; Cho Y. Y.; Lee J. Y.; Lee H. S.; Kang H. C. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm. Sin. B 2018, 8 (6), 862–880. 10.1016/j.apsb.2018.05.006. PubMed DOI PMC
Alamudi S. H.; Satapathy R.; Kim J.; Su D.; Ren H.; Das R.; Hu L.; Alvarado-Martínez E.; Lee J. Y.; Hoppmann C.; Peña-Cabrera E.; Ha H.-H.; Park H.-S.; Wang L.; Chang Y.-T. Development of background-free tame fluorescent probes for intracellular live cell imaging. Nat. Commun. 2016, 7 (1), 11964.10.1038/ncomms11964. PubMed DOI PMC
Knall A. C.; Slugovc C. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev. 2013, 42 (12), 5131–5142. 10.1039/c3cs60049a. PubMed DOI
Oliveira B. L.; Guo Z.; Bernardes G. J. L. Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev. 2017, 46 (16), 4895–4950. 10.1039/C7CS00184C. PubMed DOI
Kozma E.; Demeter O.; Kele P. Bio-orthogonal Fluorescent Labelling of Biopolymers through Inverse-Electron-Demand Diels–Alder Reactions. Bioconjugate Chem. 2017, 18 (6), 486–501. PubMed PMC
Kang K.; Park J.; Kim E. Tetrazine ligation for chemical proteomics. Proteome Sci. 2016, 15, 15.10.1186/s12953-017-0121-5. PubMed DOI PMC
Seckute J.; Devaraj N. K. Expanding room for tetrazine ligations in the in vivo chemistry toolbox. Curr. Opin. Chem. Biol. 2013, 17 (5), 761–767. 10.1016/j.cbpa.2013.08.004. PubMed DOI PMC
Wu H.; Devaraj N. K. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles. Acc. Chem. Res. 2018, 51 (5), 1249–1259. 10.1021/acs.accounts.8b00062. PubMed DOI PMC
Devaraj N. K.; Weissleder R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 2011, 44 (9), 816–827. 10.1021/ar200037t. PubMed DOI PMC
Devaraj N. K.; Weissleder R.; Hilderbrand S. A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjugate Chem. 2008, 19 (12), 2297–2299. 10.1021/bc8004446. PubMed DOI PMC
Devaraj N. K.; Upadhyay R.; Haun J. B.; Hilderbrand S. A.; Weissleder R. Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. Angew. Chem., Int. Ed. 2009, 48 (38), 7013–7016. 10.1002/anie.200903233. PubMed DOI PMC
Blackman M. L.; Royzen M.; Fox J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 2008, 130 (41), 13518–13519. 10.1021/ja8053805. PubMed DOI PMC
Versteegen R. M.; Rossin R.; Ten Hoeve W.; Janssen H. M.; Robillard M. S. Click to Release: Instantaneous Doxorubicin Elimination upon Tetrazine Ligation. Angew. Chem., Int. Ed. 2013, 52 (52), 14112–14116. 10.1002/anie.201305969. PubMed DOI
Versteegen R. M.; Ten Hoeve W.; Rossin R.; de Geus M. A. R.; Janssen H. M.; Robillard M. S. Click-to-Release from trans-Cyclooctenes: Mechanistic Insights and Expansion of Scope from Established Carbamate to Remarkable Ether Cleavage. Angew. Chem., Int. Ed. 2018, 57 (33), 10494–10499. 10.1002/anie.201800402. PubMed DOI
Neumann K.; Gambardella A.; Bradley M. The Emerging Role of Tetrazines in Drug-Activation Chemistries. ChemBioChem 2019, 20 (7), 872–876. 10.1002/cbic.201800590. PubMed DOI
Jimenez-Moreno E.; Guo Z.; Oliveira B. L.; Albuquerque I. S.; Kitowski A.; Guerreiro A.; Boutureira O.; Rodrigues T.; Jimenez-Oses G.; Bernardes G. J. Vinyl Ether/Tetrazine Pair for the Traceless Release of Alcohols in Cells. Angew. Chem., Int. Ed. 2017, 56 (1), 243–247. 10.1002/anie.201609607. PubMed DOI PMC
Czuban M.; Srinivasan S.; Yee N. A.; Agustin E.; Koliszak A.; Miller E.; Khan I.; Quinones I.; Noory H.; Motola C.; Volkmer R.; Di Luca M.; Trampuz A.; Royzen M.; Mejia Oneto J. M. Bio-Orthogonal Chemistry and Reloadable Biomaterial Enable Local Activation of Antibiotic Prodrugs and Enhance Treatments against Staphylococcus aureus Infections. ACS Cent. Sci. 2018, 4 (12), 1624–1632. 10.1021/acscentsci.8b00344. PubMed DOI PMC
Mejia Oneto J. M.; Khan I.; Seebald L.; Royzen M. In Vivo Bioorthogonal Chemistry Enables Local Hydrogel and Systemic Pro-Drug To Treat Soft Tissue Sarcoma. ACS Cent. Sci. 2016, 2 (7), 476–482. 10.1021/acscentsci.6b00150. PubMed DOI PMC
Wu H.; Cisneros B. T.; Cole C. M.; Devaraj N. K. Bioorthogonal tetrazine-mediated transfer reactions facilitate reaction turnover in nucleic acid-templated detection of microRNA. J. Am. Chem. Soc. 2014, 136 (52), 17942–17945. 10.1021/ja510839r. PubMed DOI PMC
Rossin R.; Versteegen R. M.; Wu J.; Khasanov A.; Wessels H. J.; Steenbergen E. J.; Ten Hoeve W.; Janssen H. M.; van Onzen A.; Hudson P. J.; Robillard M. S. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat. Commun. 2018, 9 (1), 1484.10.1038/s41467-018-03880-y. PubMed DOI PMC
Khan I.; Seebald L. M.; Robertson N. M.; Yigit M. V.; Royzen M. Controlled in-cell activation of RNA therapeutics using bond-cleaving bio-orthogonal chemistry. Chem. Sci. 2017, 8 (8), 5705–5712. 10.1039/C7SC01380A. PubMed DOI PMC
van der Gracht A. M. F.; de Geus M. A. R.; Camps M. G. M.; Ruckwardt T. J.; Sarris A. J. C.; Bremmers J.; Maurits E.; Pawlak J. B.; Posthoorn M. M.; Bonger K. M.; Filippov D. V.; Overkleeft H. S.; Robillard M. S.; Ossendorp F.; van Kasteren S. I. Chemical Control over T-Cell Activation in Vivo Using Deprotection of trans-Cyclooctene-Modified Epitopes. ACS Chem. Biol. 2018, 13 (6), 1569–1576. 10.1021/acschembio.8b00155. PubMed DOI PMC
Rossin R.; van Duijnhoven S. M. J.; ten Hoeve W.; Janssen H. M.; Kleijn L. H. J.; Hoeben F. J. M.; Versteegen R. M.; Robillard M. S. Triggered Drug Release from an Antibody-Drug Conjugate Using Fast “Click-to-Release” Chemistry in Mice. Bioconjugate Chem. 2016, 27 (7), 1697–1706. 10.1021/acs.bioconjchem.6b00231. PubMed DOI
van Onzen A.; Versteegen R. M.; Hoeben F. J. M.; Filot I. A. W.; Rossin R.; Zhu T.; Wu J.; Hudson P. J.; Janssen H. M.; Ten Hoeve W.; Robillard M. S. Bioorthogonal Tetrazine Carbamate Cleavage by Highly Reactive trans-Cyclooctene. J. Am. Chem. Soc. 2020, 142 (25), 10955–10963. 10.1021/jacs.0c00531. PubMed DOI
Carlson J. C. T.; Mikula H.; Weissleder R. Unraveling Tetrazine-Triggered Bioorthogonal Elimination Enables Chemical Tools for Ultrafast Release and Universal Cleavage. J. Am. Chem. Soc. 2018, 140 (10), 3603–3612. 10.1021/jacs.7b11217. PubMed DOI PMC
Mancuso F.; Rahm M.; Dzijak R.; Mertlíková-Kaiserová H.; Vrabel M. Transition-Metal-Mediated versus Tetrazine-Triggered Bioorthogonal Release Reactions: Direct Comparison and Combinations Thereof. ChemPlusChem 2020, 85 (8), 1669–1675. 10.1002/cplu.202000477. PubMed DOI
Zielonka J.; Joseph J.; Sikora A.; Hardy M.; Ouari O.; Vasquez-Vivar J.; Cheng G.; Lopez M.; Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem. Rev. 2017, 117 (15), 10043–10120. 10.1021/acs.chemrev.7b00042. PubMed DOI PMC
Galeta J.; Dzijak R.; Obořil J.; Dračínský M.; Vrabel M. A Systematic Study of Coumarin–Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging. Chem. - Eur. J. 2020, 26 (44), 9945–9953. 10.1002/chem.202001290. PubMed DOI PMC
Sunwoo K.; Won M.; Ko K. P.; Choi M.; Arambula J. F.; Chi S. G.; Sessler J. L.; Verwilst P.; Kim J. S. Mitochondrial Relocation of a Common Synthetic Antibiotic: A Non-genotoxic Approach to Cancer Therapy. Chem. 2020, 6 (6), 1408–1419. 10.1016/j.chempr.2020.03.004. PubMed DOI PMC
Sharma A.; Lee M. G.; Shi H.; Won M.; Arambula J. F.; Sessler J. L.; Lee J. Y.; Chi S. G.; Kim J. S. Overcoming Drug Resistance by Targeting Cancer Bioenergetics with an Activatable Prodrug. Chem. 2018, 4 (10), 2370–2383. 10.1016/j.chempr.2018.08.002. DOI
Al-Hadiya B. M. H.Niclosamide: Comprehensive Profile. In Profiles of Drug Substances, Excipients and Related Methodology; Brittain H. G., Ed.; Academic Press: 2005; Vol. 32, pp 67–96. PubMed
Childress E. S.; Alexopoulos S. J.; Hoehn K. L.; Santos W. L. Small Molecule Mitochondrial Uncouplers and Their Therapeutic Potential. J. Med. Chem. 2018, 61 (11), 4641–4655. 10.1021/acs.jmedchem.7b01182. PubMed DOI
Weinbach E. C.; Garbus J. Mechanism of Action of Reagents that uncouple Oxidative Phosphorylation. Nature 1969, 221 (5185), 1016–1018. 10.1038/2211016a0. PubMed DOI
Fonseca B. D.; Diering G. H.; Bidinosti M. A.; Dalal K.; Alain T.; Balgi A. D.; Forestieri R.; Nodwell M.; Rajadurai C. V.; Gunaratnam C.; Tee A. R.; Duong F.; Andersen R. J.; Orlowski J.; Numata M.; Sonenberg N.; Roberge M. Structure-Activity Analysis of Niclosamide Reveals Potential Role for Cytoplasmic pH in Control of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. J. Biol. Chem. 2012, 287 (21), 17530–17545. 10.1074/jbc.M112.359638. PubMed DOI PMC
Kumar R.; Coronel L.; Somalanka B.; Raju A.; Aning O. A.; An O.; Ho Y. S.; Chen S.; Mak S. Y.; Hor P. Y.; Yang H.; Lakshmanan M.; Itoh H.; Tan S. Y.; Lim Y. K.; Wong A. P. C.; Chew S. H.; Huynh T. H.; Goh B. C.; Lim C. Y.; Tergaonkar V.; Cheok C. F. Mitochondrial uncoupling reveals a novel therapeutic opportunity for p53-defective cancers. Nat. Commun. 2018, 9, 3931.10.1038/s41467-018-05805-1. PubMed DOI PMC
Alasadi A.; Chen M.; Swapna G. V. T.; Tao H. L.; Guo J. J.; Collantes J.; Fadhil N.; Montelione G. T.; Jin S. K. Effect of mitochondrial uncouplers niclosamide ethanolamine (NEN) and oxyclozanide on hepatic metastasis of colon cancer. Cell Death Dis. 2018, 9, 215.10.1038/s41419-017-0092-6. PubMed DOI PMC
Li Y. H.; Li P. K.; Roberts M. J.; Arend R. C.; Samant R. S.; Buchsbaum D. J. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014, 349 (1), 8–14. 10.1016/j.canlet.2014.04.003. PubMed DOI PMC
Xu M.; Lee E. M.; Wen Z.; Cheng Y.; Huang W.-K.; Qian X.; Tcw J.; Kouznetsova J.; Ogden S. C.; Hammack C.; Jacob F.; Nguyen H. N.; Itkin M.; Hanna C.; Shinn P.; Allen C.; Michael S. G.; Simeonov A.; Huang W.; Christian K. M.; Goate A.; Brennand K. J.; Huang R.; Xia M.; Ming G.-l.; Zheng W.; Song H.; Tang H. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 2016, 22 (10), 1101–1107. 10.1038/nm.4184. PubMed DOI PMC
Xu J.; Shi P.-Y.; Li H.; Zhou J. Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential. ACS Infect. Dis. 2020, 6 (5), 909–915. 10.1021/acsinfecdis.0c00052. PubMed DOI PMC
Pindiprolu S. K. S. S.; Pindiprolu S. H. Plausible mechanisms of Niclosamide as an antiviral agent against COVID-19. Med. Hypotheses 2020, 140, 109765–109766. 10.1016/j.mehy.2020.109765. PubMed DOI PMC
Rajendran L.; Knölker H.-J.; Simons K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discovery 2010, 9, 29–42. 10.1038/nrd2897. PubMed DOI
Bioorthogonal Chemistry in Cellular Organelles