Structurally Redesigned Bioorthogonal Reagents for Mitochondria-Specific Prodrug Activation

. 2021 Jan 25 ; 1 (1) : 23-30. [epub] 20201215

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33554213

The development of abiotic chemical reactions that can be performed in an organelle-specific manner can provide new opportunities in drug delivery and cell and chemical biology. However, due to the complexity of the cellular environment, this remains a significant challenge. Here, we introduce structurally redesigned bioorthogonal tetrazine reagents that spontaneously accumulate in mitochondria of live mammalian cells. The attributes leading to their efficient accumulation in the organelle were optimized to include the right combination of lipophilicity and positive delocalized charge. The best performing mitochondriotropic tetrazines enable subcellular chemical release of TCO-caged compounds as we show using fluorogenic substrates and mitochondrial uncoupler niclosamide. Our work demonstrates that a shrewd redesign of common bioorthogonal reagents can lead to their transformation into organelle-specific probes, opening the possibility to activate prodrugs and manipulate biological processes at the subcellular level by using purely chemical tools.

Zobrazit více v PubMed

Row R. D.; Prescher J. A. Constructing New Bioorthogonal Reagents and Reactions. Acc. Chem. Res. 2018, 51 (5), 1073–1081. 10.1021/acs.accounts.7b00606. PubMed DOI PMC

Sletten E. M.; Bertozzi C. R. Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angew. Chem., Int. Ed. 2009, 48 (38), 6974–6998. 10.1002/anie.200900942. PubMed DOI PMC

Patterson D. M.; Nazarova L. A.; Prescher J. A. Finding the Right (Bioorthogonal) Chemistry. ACS Chem. Biol. 2014, 9 (3), 592–605. 10.1021/cb400828a. PubMed DOI

Spicer C. D.; Pashuck E. T.; Stevens M. M. Achieving Controlled Biomolecule-Biomaterial Conjugation. Chem. Rev. 2018, 118 (16), 7702–7743. 10.1021/acs.chemrev.8b00253. PubMed DOI PMC

Boutureira O.; Bernardes G. J. L. Advances in Chemical Protein Modification. Chem. Rev. 2015, 115 (5), 2174–2195. 10.1021/cr500399p. PubMed DOI

McKay C. S.; Finn M. G. Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation. Chem. Biol. 2014, 21 (9), 1075–1101. 10.1016/j.chembiol.2014.09.002. PubMed DOI PMC

Debets M. F.; van Hest J. C. M.; Rutjes F. P. J. T. Bioorthogonal labelling of biomolecules: new functional handles and ligation methods. Org. Biomol. Chem. 2013, 11 (38), 6439–6455. 10.1039/c3ob41329b. PubMed DOI

Takaoka Y.; Ojida A.; Hamachi I. Protein Organic Chemistry and Applications for Labeling and Engineering in Live-Cell Systems. Angew. Chem., Int. Ed. 2013, 52 (15), 4088–4106. 10.1002/anie.201207089. PubMed DOI

Borrmann A.; van Hest J. C. M. Bioorthogonal chemistry in living organisms. Chem. Sci. 2014, 5 (6), 2123–2134. 10.1039/c3sc52768a. DOI

Gordon C. G.; Bertozzi C. R.. In Vivo Applications of Bioorthogonal Chemistries. In Chemoselective and Bioorthogonal Ligation Reactions; Algar W. R.; Dawson P. E.; Medintz I. L., Eds.; WILEY-VCH Verlag GmbH & Co. KGaA, 2017.

Logan A.; Pell V. R.; Shaffer K. J.; Evans C.; Stanley N. J.; Robb E. L.; Prime T. A.; Chouchani E. T.; Cocheme H. M.; Fearnley I. M.; Vidoni S.; James A. M.; Porteous C. M.; Partridge L.; Krieg T.; Smith R. A.; Murphy M. P. Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry. Cell Metab. 2016, 23 (2), 379–385. 10.1016/j.cmet.2015.11.014. PubMed DOI PMC

Tomas-Gamasa M.; Martinez-Calvo M.; Couceiro J. R.; Mascarenas J. L. Transition metal catalysis in the mitochondria of living cells. Nat. Commun. 2016, 7, 12538.10.1038/ncomms12538. PubMed DOI PMC

Wang H.; Li W. G.; Zeng K.; Wu Y. J.; Zhang Y.; Xu T. L.; Chen Y. Photocatalysis Enables Visible-Light Uncaging of Bioactive Molecules in Live Cells. Angew. Chem., Int. Ed. 2019, 58 (2), 561–565. 10.1002/anie.201811261. PubMed DOI

Xue Z.; Zhu R.; Wang S.; Li J.; Han J.; Liu J.; Han S. Organelle-Directed Staudinger Reaction Enabling Fluorescence-on Resolution of Mitochondrial Electropotentials via a Self-Immolative Charge Reversal Probe. Anal. Chem. 2018, 90 (4), 2954–2962. 10.1021/acs.analchem.7b05465. PubMed DOI

Zheng Y.; Ji X.; Yu B.; Ji K.; Gallo D.; Csizmadia E.; Zhu M.; Choudhury M. R.; De La Cruz L. K. C.; Chittavong V.; Pan Z.; Yuan Z.; Otterbein L. E.; Wang B. Enrichment-triggered prodrug activation demonstrated through mitochondria-targeted delivery of doxorubicin and carbon monoxide. Nat. Chem. 2018, 10, 787–794. 10.1038/s41557-018-0055-2. PubMed DOI PMC

Siegl S. J.; Dzijak R.; Vazquez A.; Pohl R.; Vrabel M. The discovery of pyridinium 1,2,4-triazines with enhanced performance in bioconjugation reactions. Chem. Sci. 2017, 8 (5), 3593–3598. 10.1039/C6SC05442K. PubMed DOI PMC

Zheng N.; Tsai H. N.; Zhang X.; Shedden K.; Rosania G. R. The subcellular distribution of small molecules: a meta-analysis. Mol. Pharmaceutics 2011, 8 (5), 1611–1618. 10.1021/mp200093z. PubMed DOI PMC

Rosania G. R. Supertargeted chemistry: identifying relationships between molecular structures and their sub-cellular distribution. Curr. Top. Med. Chem. 2003, 3 (6), 659–685. 10.2174/1568026033452410. PubMed DOI

Louzoun-Zada S.; Jaber Q. Z.; Fridman M. Guiding Drugs to Target-Harboring Organelles: Stretching Drug-Delivery to a Higher Level of Resolution. Angew. Chem., Int. Ed. 2019, 58 (44), 15584–15594. 10.1002/anie.201906284. PubMed DOI

Friedman J. R.; Nunnari J. Mitochondrial form and function. Nature 2014, 505 (7483), 335–343. 10.1038/nature12985. PubMed DOI PMC

Vyas S.; Zaganjor E.; Haigis M. C. Mitochondria and Cancer. Cell 2016, 166 (3), 555–566. 10.1016/j.cell.2016.07.002. PubMed DOI PMC

Chen Z. P.; Li M.; Zhang L. J.; He J. Y.; Wu L.; Xiao Y. Y.; Duan J. A.; Cai T.; Li W. D. Mitochondria-targeted drug delivery system for cancer treatment. J. Drug Target. 2016, 24 (6), 492–502. 10.3109/1061186X.2015.1108325. PubMed DOI

Suomalainen A.; Battersby B. J. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat. Rev. Mol. Cell Biol. 2018, 19 (2), 77–92. 10.1038/nrm.2017.66. PubMed DOI

Shpilka T.; Haynes C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 2018, 19 (2), 109–120. 10.1038/nrm.2017.110. PubMed DOI

Vafai S. B.; Mootha V. K. Mitochondrial disorders as windows into an ancient organelle. Nature 2012, 491 (7424), 374–383. 10.1038/nature11707. PubMed DOI

Rin Jean S.; Tulumello D. V.; Wisnovsky S. P.; Lei E. K.; Pereira M. P.; Kelley S. O. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem. Biol. 2014, 9 (2), 323–333. 10.1021/cb400821p. PubMed DOI

Murphy M. P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta, Bioenerg. 2008, 1777 (7–8), 1028–1031. 10.1016/j.bbabio.2008.03.029. PubMed DOI

Battogtokh G.; Choi Y. S.; Kang D. S.; Park S. J.; Shim M. S.; Huh K. M.; Cho Y. Y.; Lee J. Y.; Lee H. S.; Kang H. C. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm. Sin. B 2018, 8 (6), 862–880. 10.1016/j.apsb.2018.05.006. PubMed DOI PMC

Alamudi S. H.; Satapathy R.; Kim J.; Su D.; Ren H.; Das R.; Hu L.; Alvarado-Martínez E.; Lee J. Y.; Hoppmann C.; Peña-Cabrera E.; Ha H.-H.; Park H.-S.; Wang L.; Chang Y.-T. Development of background-free tame fluorescent probes for intracellular live cell imaging. Nat. Commun. 2016, 7 (1), 11964.10.1038/ncomms11964. PubMed DOI PMC

Knall A. C.; Slugovc C. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev. 2013, 42 (12), 5131–5142. 10.1039/c3cs60049a. PubMed DOI

Oliveira B. L.; Guo Z.; Bernardes G. J. L. Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev. 2017, 46 (16), 4895–4950. 10.1039/C7CS00184C. PubMed DOI

Kozma E.; Demeter O.; Kele P. Bio-orthogonal Fluorescent Labelling of Biopolymers through Inverse-Electron-Demand Diels–Alder Reactions. Bioconjugate Chem. 2017, 18 (6), 486–501. PubMed PMC

Kang K.; Park J.; Kim E. Tetrazine ligation for chemical proteomics. Proteome Sci. 2016, 15, 15.10.1186/s12953-017-0121-5. PubMed DOI PMC

Seckute J.; Devaraj N. K. Expanding room for tetrazine ligations in the in vivo chemistry toolbox. Curr. Opin. Chem. Biol. 2013, 17 (5), 761–767. 10.1016/j.cbpa.2013.08.004. PubMed DOI PMC

Wu H.; Devaraj N. K. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles. Acc. Chem. Res. 2018, 51 (5), 1249–1259. 10.1021/acs.accounts.8b00062. PubMed DOI PMC

Devaraj N. K.; Weissleder R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 2011, 44 (9), 816–827. 10.1021/ar200037t. PubMed DOI PMC

Devaraj N. K.; Weissleder R.; Hilderbrand S. A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjugate Chem. 2008, 19 (12), 2297–2299. 10.1021/bc8004446. PubMed DOI PMC

Devaraj N. K.; Upadhyay R.; Haun J. B.; Hilderbrand S. A.; Weissleder R. Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. Angew. Chem., Int. Ed. 2009, 48 (38), 7013–7016. 10.1002/anie.200903233. PubMed DOI PMC

Blackman M. L.; Royzen M.; Fox J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 2008, 130 (41), 13518–13519. 10.1021/ja8053805. PubMed DOI PMC

Versteegen R. M.; Rossin R.; Ten Hoeve W.; Janssen H. M.; Robillard M. S. Click to Release: Instantaneous Doxorubicin Elimination upon Tetrazine Ligation. Angew. Chem., Int. Ed. 2013, 52 (52), 14112–14116. 10.1002/anie.201305969. PubMed DOI

Versteegen R. M.; Ten Hoeve W.; Rossin R.; de Geus M. A. R.; Janssen H. M.; Robillard M. S. Click-to-Release from trans-Cyclooctenes: Mechanistic Insights and Expansion of Scope from Established Carbamate to Remarkable Ether Cleavage. Angew. Chem., Int. Ed. 2018, 57 (33), 10494–10499. 10.1002/anie.201800402. PubMed DOI

Neumann K.; Gambardella A.; Bradley M. The Emerging Role of Tetrazines in Drug-Activation Chemistries. ChemBioChem 2019, 20 (7), 872–876. 10.1002/cbic.201800590. PubMed DOI

Jimenez-Moreno E.; Guo Z.; Oliveira B. L.; Albuquerque I. S.; Kitowski A.; Guerreiro A.; Boutureira O.; Rodrigues T.; Jimenez-Oses G.; Bernardes G. J. Vinyl Ether/Tetrazine Pair for the Traceless Release of Alcohols in Cells. Angew. Chem., Int. Ed. 2017, 56 (1), 243–247. 10.1002/anie.201609607. PubMed DOI PMC

Czuban M.; Srinivasan S.; Yee N. A.; Agustin E.; Koliszak A.; Miller E.; Khan I.; Quinones I.; Noory H.; Motola C.; Volkmer R.; Di Luca M.; Trampuz A.; Royzen M.; Mejia Oneto J. M. Bio-Orthogonal Chemistry and Reloadable Biomaterial Enable Local Activation of Antibiotic Prodrugs and Enhance Treatments against Staphylococcus aureus Infections. ACS Cent. Sci. 2018, 4 (12), 1624–1632. 10.1021/acscentsci.8b00344. PubMed DOI PMC

Mejia Oneto J. M.; Khan I.; Seebald L.; Royzen M. In Vivo Bioorthogonal Chemistry Enables Local Hydrogel and Systemic Pro-Drug To Treat Soft Tissue Sarcoma. ACS Cent. Sci. 2016, 2 (7), 476–482. 10.1021/acscentsci.6b00150. PubMed DOI PMC

Wu H.; Cisneros B. T.; Cole C. M.; Devaraj N. K. Bioorthogonal tetrazine-mediated transfer reactions facilitate reaction turnover in nucleic acid-templated detection of microRNA. J. Am. Chem. Soc. 2014, 136 (52), 17942–17945. 10.1021/ja510839r. PubMed DOI PMC

Rossin R.; Versteegen R. M.; Wu J.; Khasanov A.; Wessels H. J.; Steenbergen E. J.; Ten Hoeve W.; Janssen H. M.; van Onzen A.; Hudson P. J.; Robillard M. S. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat. Commun. 2018, 9 (1), 1484.10.1038/s41467-018-03880-y. PubMed DOI PMC

Khan I.; Seebald L. M.; Robertson N. M.; Yigit M. V.; Royzen M. Controlled in-cell activation of RNA therapeutics using bond-cleaving bio-orthogonal chemistry. Chem. Sci. 2017, 8 (8), 5705–5712. 10.1039/C7SC01380A. PubMed DOI PMC

van der Gracht A. M. F.; de Geus M. A. R.; Camps M. G. M.; Ruckwardt T. J.; Sarris A. J. C.; Bremmers J.; Maurits E.; Pawlak J. B.; Posthoorn M. M.; Bonger K. M.; Filippov D. V.; Overkleeft H. S.; Robillard M. S.; Ossendorp F.; van Kasteren S. I. Chemical Control over T-Cell Activation in Vivo Using Deprotection of trans-Cyclooctene-Modified Epitopes. ACS Chem. Biol. 2018, 13 (6), 1569–1576. 10.1021/acschembio.8b00155. PubMed DOI PMC

Rossin R.; van Duijnhoven S. M. J.; ten Hoeve W.; Janssen H. M.; Kleijn L. H. J.; Hoeben F. J. M.; Versteegen R. M.; Robillard M. S. Triggered Drug Release from an Antibody-Drug Conjugate Using Fast “Click-to-Release” Chemistry in Mice. Bioconjugate Chem. 2016, 27 (7), 1697–1706. 10.1021/acs.bioconjchem.6b00231. PubMed DOI

van Onzen A.; Versteegen R. M.; Hoeben F. J. M.; Filot I. A. W.; Rossin R.; Zhu T.; Wu J.; Hudson P. J.; Janssen H. M.; Ten Hoeve W.; Robillard M. S. Bioorthogonal Tetrazine Carbamate Cleavage by Highly Reactive trans-Cyclooctene. J. Am. Chem. Soc. 2020, 142 (25), 10955–10963. 10.1021/jacs.0c00531. PubMed DOI

Carlson J. C. T.; Mikula H.; Weissleder R. Unraveling Tetrazine-Triggered Bioorthogonal Elimination Enables Chemical Tools for Ultrafast Release and Universal Cleavage. J. Am. Chem. Soc. 2018, 140 (10), 3603–3612. 10.1021/jacs.7b11217. PubMed DOI PMC

Mancuso F.; Rahm M.; Dzijak R.; Mertlíková-Kaiserová H.; Vrabel M. Transition-Metal-Mediated versus Tetrazine-Triggered Bioorthogonal Release Reactions: Direct Comparison and Combinations Thereof. ChemPlusChem 2020, 85 (8), 1669–1675. 10.1002/cplu.202000477. PubMed DOI

Zielonka J.; Joseph J.; Sikora A.; Hardy M.; Ouari O.; Vasquez-Vivar J.; Cheng G.; Lopez M.; Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem. Rev. 2017, 117 (15), 10043–10120. 10.1021/acs.chemrev.7b00042. PubMed DOI PMC

Galeta J.; Dzijak R.; Obořil J.; Dračínský M.; Vrabel M. A Systematic Study of Coumarin–Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging. Chem. - Eur. J. 2020, 26 (44), 9945–9953. 10.1002/chem.202001290. PubMed DOI PMC

Sunwoo K.; Won M.; Ko K. P.; Choi M.; Arambula J. F.; Chi S. G.; Sessler J. L.; Verwilst P.; Kim J. S. Mitochondrial Relocation of a Common Synthetic Antibiotic: A Non-genotoxic Approach to Cancer Therapy. Chem. 2020, 6 (6), 1408–1419. 10.1016/j.chempr.2020.03.004. PubMed DOI PMC

Sharma A.; Lee M. G.; Shi H.; Won M.; Arambula J. F.; Sessler J. L.; Lee J. Y.; Chi S. G.; Kim J. S. Overcoming Drug Resistance by Targeting Cancer Bioenergetics with an Activatable Prodrug. Chem. 2018, 4 (10), 2370–2383. 10.1016/j.chempr.2018.08.002. DOI

Al-Hadiya B. M. H.Niclosamide: Comprehensive Profile. In Profiles of Drug Substances, Excipients and Related Methodology; Brittain H. G., Ed.; Academic Press: 2005; Vol. 32, pp 67–96. PubMed

Childress E. S.; Alexopoulos S. J.; Hoehn K. L.; Santos W. L. Small Molecule Mitochondrial Uncouplers and Their Therapeutic Potential. J. Med. Chem. 2018, 61 (11), 4641–4655. 10.1021/acs.jmedchem.7b01182. PubMed DOI

Weinbach E. C.; Garbus J. Mechanism of Action of Reagents that uncouple Oxidative Phosphorylation. Nature 1969, 221 (5185), 1016–1018. 10.1038/2211016a0. PubMed DOI

Fonseca B. D.; Diering G. H.; Bidinosti M. A.; Dalal K.; Alain T.; Balgi A. D.; Forestieri R.; Nodwell M.; Rajadurai C. V.; Gunaratnam C.; Tee A. R.; Duong F.; Andersen R. J.; Orlowski J.; Numata M.; Sonenberg N.; Roberge M. Structure-Activity Analysis of Niclosamide Reveals Potential Role for Cytoplasmic pH in Control of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. J. Biol. Chem. 2012, 287 (21), 17530–17545. 10.1074/jbc.M112.359638. PubMed DOI PMC

Kumar R.; Coronel L.; Somalanka B.; Raju A.; Aning O. A.; An O.; Ho Y. S.; Chen S.; Mak S. Y.; Hor P. Y.; Yang H.; Lakshmanan M.; Itoh H.; Tan S. Y.; Lim Y. K.; Wong A. P. C.; Chew S. H.; Huynh T. H.; Goh B. C.; Lim C. Y.; Tergaonkar V.; Cheok C. F. Mitochondrial uncoupling reveals a novel therapeutic opportunity for p53-defective cancers. Nat. Commun. 2018, 9, 3931.10.1038/s41467-018-05805-1. PubMed DOI PMC

Alasadi A.; Chen M.; Swapna G. V. T.; Tao H. L.; Guo J. J.; Collantes J.; Fadhil N.; Montelione G. T.; Jin S. K. Effect of mitochondrial uncouplers niclosamide ethanolamine (NEN) and oxyclozanide on hepatic metastasis of colon cancer. Cell Death Dis. 2018, 9, 215.10.1038/s41419-017-0092-6. PubMed DOI PMC

Li Y. H.; Li P. K.; Roberts M. J.; Arend R. C.; Samant R. S.; Buchsbaum D. J. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014, 349 (1), 8–14. 10.1016/j.canlet.2014.04.003. PubMed DOI PMC

Xu M.; Lee E. M.; Wen Z.; Cheng Y.; Huang W.-K.; Qian X.; Tcw J.; Kouznetsova J.; Ogden S. C.; Hammack C.; Jacob F.; Nguyen H. N.; Itkin M.; Hanna C.; Shinn P.; Allen C.; Michael S. G.; Simeonov A.; Huang W.; Christian K. M.; Goate A.; Brennand K. J.; Huang R.; Xia M.; Ming G.-l.; Zheng W.; Song H.; Tang H. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 2016, 22 (10), 1101–1107. 10.1038/nm.4184. PubMed DOI PMC

Xu J.; Shi P.-Y.; Li H.; Zhou J. Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential. ACS Infect. Dis. 2020, 6 (5), 909–915. 10.1021/acsinfecdis.0c00052. PubMed DOI PMC

Pindiprolu S. K. S. S.; Pindiprolu S. H. Plausible mechanisms of Niclosamide as an antiviral agent against COVID-19. Med. Hypotheses 2020, 140, 109765–109766. 10.1016/j.mehy.2020.109765. PubMed DOI PMC

Rajendran L.; Knölker H.-J.; Simons K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discovery 2010, 9, 29–42. 10.1038/nrd2897. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bioorthogonal Chemistry in Cellular Organelles

. 2023 Dec 16 ; 382 (1) : 2. [epub] 20231216

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...