Influence of Zwitterionic Buffer Effects with Thermal Modification Treatments of Wood on Symbiotic Protists in Reticulitermes grassei Clément
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000803
project "Advanced research supporting the forestry and wood-processing sector's adaptation to global change and the 4th industrial revolution", OP RDE
COST Action FP1407
COST Action FP1407 "Understanding wood modification through an integrated scientific and environmental impact approach (ModWoodLife)"
not applicable
LNEC P2I project ConstBio
not applicable
CT WOOD - a centre of excellence at Luleå University of Technology supported by the Swedish wood industry
PubMed
33562148
PubMed Central
PMC7915112
DOI
10.3390/insects12020139
PII: insects12020139
Knihovny.cz E-zdroje
- Klíčová slova
- Reticulitermes grassei, bicine, symbionts, termite gut, thermal modification, tricine, wood,
- Publikační typ
- časopisecké články MeSH
The majority of thermal modification processes are at temperatures greater than 180 °C, resulting in a product with some properties enhanced and some diminished (e.g., mechanical properties). However, the durability of thermally modified wood to termite attack is recognised as low. Recent attempts at combining thermal modification with chemical modification, either prior to or directly after the thermal process, are promising. Buffers, although not influencing the reaction systems, may interact on exposure to certain conditions, potentially acting as promoters of biological changes. In this study, two zwitterionic buffers, bicine and tricine, chosen for their potential to form Maillard-type products with fragmented hemicelluloses/volatiles, were assessed with and without thermal modification for two wood species (spruce and beech), with subsequent evaluation of their effect against subterranean termites (Reticulitermes grassei Clément) and their symbiotic protists. The effect of the wood treatments on termites and their symbionts was visible after four weeks, especially for spruce treated with tricine and bicine and heat treatment (bicine HT), and for beech treated with bicine and bicine and heat treatment (bicine HT). The chemical behaviour of these substances should be further investigated when in contact with wood and also after heat treatment. This is the first study evaluating the effect of potential Maillard reactions with zwitterionic buffers on subterranean termite symbiotic fauna.
Zobrazit více v PubMed
Wright M.S., Lax A.R. Combined effect of microbial and chemical control agents on subterranean termites. J. Microbiol. 2013;51:578–583. doi: 10.1007/s12275-013-2628-5. PubMed DOI
Unsal O., Kartal S.N., Candan Z., Arango R.A., Clausen C.A., Green F., III Decay and termite resistance, water absorption and swelling of thermally compressed wood panels. Int. Biodeter. Biodegrad. 2009;63:548–552. doi: 10.1016/j.ibiod.2009.02.001. DOI
Oliver-Villanueva J., Gascón-Garrido P., Ibiza-Palacios M.S. Evaluation of thermally-treated wood of beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) against Mediterranean termites (Reticulitermes spp.) Eur. J. Wood Wood Prod. 2013;71:391–393. doi: 10.1007/s00107-013-0687-2. DOI
Brito F.M.S., Paes J.B., Oliveira J.T.S., Arantes M.D.C., Dudecki L. Chemical characterization and biological resistance of thermally treated bamboo. Constr. Build. Mater. 2020;262:120033. doi: 10.1016/j.conbuildmat.2020.120033. DOI
Salman S., Thévenon M.F., Pétrissans A., Dumarçay S., Candelier K., Gérardin P. Improvement of the durability of heat-treated wood against termites. Maderas-Cienc. Tecnol. 2017;19:317–328. doi: 10.4067/S0718-221X2017005000027. DOI
Jones D., Sandberg D., Goli G., Todaro L. Wood Modification in Europe: A State-of-the-Art about Processes, Products and Applications. Firenze University Press; Florence, Italy: 2019. 113p. (online PDF)
Sandberg D., Kutnar A., Karlsson O., Jones D. Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation. Taylor and Francis Ltd.; Abingdon, UK: 2021. 450p.
Spear M., Binding T., Jenkins D., Nicholls J., Ormondroyd G. Mild thermal modification to enhance the machinability of larch; Proceedings of the 7th European Conference on Wood Modification; Lisbon, Portugal. 10–12 March 2014.
Zhang J.-W., Liu H.-H., Yang L., Han T.-Q., Yin Q. Effect of moderate temperature thermal modification combined with wax impregnation on wood properties. Appl. Sci. 2020;10:8231. doi: 10.3390/app10228231. DOI
Humar M., Kržišnik D., Lesar B., Thaler N., Ugovšek A., Zupančič K., Žlahtič M. Thermal modification of wax-impregnated wood to enhance its physical, mechanical, and biological properties. Holzforschung. 2017;71:57–64. doi: 10.1515/hf-2016-0063. DOI
Sun B., Wang X., Liu J. Changes in dimensional stability and mechanical properties of Eucalyptus pellita by melamine–urea–formaldehyde resin impregnation and heat treatment. Eur. J. Wood Wood Prod. 2013;71:557–562. doi: 10.1007/s00107-013-0700-9. DOI
Behr G., Bollmus S., Gellerich A., Militz H. Improvement of mechanical properties of thermally modified hardwood through melamine treatment. Wood Mater. Sci. Eng. 2017;13:262–270. doi: 10.1080/17480272.2017.1313313. DOI
Mubarok M., Dumarcay S., Militz H., Candelier K., Thévenon M.-F., Gérardin P. Non-biocide antifungal and anti-termite wood preservation treatments based on combinations of thermal modification with different chemical additives. Eur. J. Wood Wood Prod. 2019;77:1125–1136. doi: 10.1007/s00107-019-01468-x. DOI
Keey R.B. Colour development on drying. Maderas-Cienc. Tecnol. 2005;7:3–16. doi: 10.4067/S0718-221X2005000100001. DOI
Marcos M., González-Penã M.M., Hale M.D. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Colour evolution and colour changes. Holzforschung. 2009;63:385–393. doi: 10.1515/HF.2009.078. DOI
Hauptmann M., Gindl-Altmutter W., Hansmann C., Bacher M., Rosenau T., Liebner F., D’Amico S., Schwanninger M. Wood modification with tricine. Holzforschung. 2015;69:985–991. doi: 10.1515/hf-2014-0122. DOI
Peeters K., Larnøy E., Kutnar A., Hill C.A.S. An examination of the potential for the use of the Maillard reaction to modify wood. Int. Wood Prod. J. 2018;9:108–114. doi: 10.1080/20426445.2018.1471840. DOI
Popescu C.-M., Kržišnik D., Hočevar M., Humar M., Thaler N., Popescu M.-C., Jones D. Infrared spectroscopy and chemometric methods for the evaluation of the thermal/chemical treatment effectiveness of hardwoods; Proceedings of the Ninth European Conference on Wood Modification; Arnhem, The Netherlands. 17–18 September 2018; pp. 355–362.
Popescu C.-M., Jones D., Kržišnik D., Humar M. Determination of the effectiveness of a combined thermal/chemical wood modification by the use of FT–IR spectroscopy and chemometric methods. J. Mol. Struct. 2020;1200:127133. doi: 10.1016/j.molstruc.2019.127133. DOI
Good N.E., Winget G.D., Winter W., Connolly T.N., Izawa S., Singh R.M.M. Hydrogen ion buffers for biological research. Biochemistry. 1966;5:467–477. doi: 10.1021/bi00866a011. PubMed DOI
Ferreira C.M.M., Pinto I.S.S., Soares E.V., Soares H.V.M. (Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions—A review. RSC Adv. 2015;5:30989–31003. doi: 10.1039/C4RA15453C. DOI
Soni M.L., Kapoor R.C. Some thermodynamic parameters for hydroxyl amino acids: Bicine and tricine. Int. J. Quantum Chem. 1981;20:385–391. doi: 10.1002/qua.560200211. DOI
Armenante P.M., Kafkewitz D., Jou C.-J., Lewandowski G. Effect of pH on the anaerobic dechlorination of chlorophenols in a defined medium. Appl. Microbiol. Biotechnol. 1993;39:772–777. doi: 10.1007/BF00164465. DOI
Hicks M., Gebicki J.M. Rate constants for reaction of hydroxyl radicals with Tris, Tricine and Hepes buffers. FEBS J. 1986;199:92–94. doi: 10.1016/0014-5793(86)81230-3. DOI
Shiraishi H., Kataoka M., Morita Y., Umemoto J. Interactions of hydroxyl radicals with tris (hydroxymethyl) aminomethane and Good’s buffers containing hydroxymethyl or hydroxyethyl residues produce formaldehyde. Free Rad. Res. Commun. 1993;19:315–321. doi: 10.3109/10715769309056520. PubMed DOI
Brune A., Friedrich M. Microecology of the termite gut: Structure and function on a microscale. Curr. Opin. Microbiol. 2000;3:263–269. doi: 10.1016/S1369-5274(00)00087-4. PubMed DOI
Brune A., Emerson D., Breznak J.A. The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 1995;61:2681–2687. doi: 10.1128/AEM.61.7.2681-2687.1995. PubMed DOI PMC
Brugerolle G. Flagellar and cytoskeletal systems in amitochondrial flagellates: Archamoeba, Metamonada and Parabasala. Protoplasma. 1991;164:70–90. doi: 10.1007/BF01320816. DOI
Čepička I., Hampl V., Kulda J. Critical taxonomic revision of parabasalids with description of one new genus and three new species. Protist. 2010;161:400–433. doi: 10.1016/j.protis.2009.11.005. PubMed DOI
Adl S.M., Simpson A.G.B., Lane C.E., Lukes J., Bass D., Bowser S.S., Brown M.W., Burki F., Dunthorn M., Hampl V., et al. The revised classification of Eukaryotes. J. Eukaryot. Microbiol. 2012;59:429–493. doi: 10.1111/j.1550-7408.2012.00644.x. PubMed DOI PMC
Scharf M.E. Termites as targets and models for biotechnology. Annu. Rev. Entomol. 2015;60:77–102. doi: 10.1146/annurev-ento-010814-020902. PubMed DOI
Tanaka H., Aoyagi H., Shina S., Dodo Y., Yoshimura T., Nakamura R., Uchiyama H. Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Appl. Microbial. Cell Physiol. 2006;71:907–917. doi: 10.1007/s00253-005-0215-3. PubMed DOI
Hu X.P., Song D., Gao X. Biological changes in the Eastern subterranean termite, Reticulitermes flavipes (Isoptera, Rhinotermitidae) and its protozoa profile following starvation. Insectes Soc. 2011;58:39–45. doi: 10.1007/s00040-010-0114-1. DOI
Raychoudhury R., Sen R., Cal Y., Sun Y., Lietze V.U., Boucias D.G., Scharf M.E. Comparative metatranscriptomic signatures of wood and paper feeding in the gut of termite Reticulitermes flavipes (Isoptera: Rhinotermitidae) Insect Mol. Biol. 2013;22:155–171. doi: 10.1111/imb.12011. PubMed DOI
Arquette T.J., Champagne D.E., Brown M.R., Forschler B.T. Evaluation of novel and traditional measures for vigor of laboratory-cultured termites, Reticulitermes flavipes (Kollar) J. Insect Physiol. 2006;56:51–66. doi: 10.1016/j.jinsphys.2005.09.003. PubMed DOI
Rep G., Pohleven F., Košmerl S. Development of industrial kiln for thermal wood modification by a procedure with an initial vacuum and commercialisation of modified Silvapro wood; Proceedings of the Sixth European Conference on Wood Modification; Ljubljana, Slovenia. 17–18 September 2012; pp. 11–17.
EN 117 2012 . Wood Preservatives. Determination of Toxic Values against Reticulitermes Species (European Termites) (Laboratory Method) European Committee of Standardization; Brussels, Belgium:
Esteves B., Ribeiro F., Cruz-Lopes L., Ferreira J., Domingos I., Duarte M., Duarte S., Nunes L. Combined treatment by densification and heat treatment of maritime pine wood. Wood Res. 2017;62:373–388.
Trager W. The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis, and of certain other termite protozoa. Biol. Bull. 1934;66:182–190. doi: 10.2307/1537331. DOI
Duarte S., Nobre T., Borges P.A.V., Nunes L. Symbiotic flagellate protists as cryptic drivers of adaptation and invasiveness of the subterranean termite Reticulitermes grassei Clément. Ecol. Evol. 2018;8:5242–5253. doi: 10.1002/ece3.3819. PubMed DOI PMC
Leidy J. On intestinal parasites of Termes flavipes. Proc. Acad. Nat. Sci. Phila. 1877;29:146–149.
Brugerolle G., Lee J.J. Order Oxymonadida. Phylum Parabasalia. In: Lee J.J., Leedale G.F., Bradbury P., editors. The Illustrated Guide to the Protozoa. Volume II. Society of Protozoologists; Lawrence, KS, USA: 2000. pp. 1186–1250.
Brugerolle G., Bordereau C. Immunological and ultrastructural characterization of spirotrichonymphid flagellates from Reticulitermes grassei and R. flavipes (syn. R. santonensis), with special reference to Spirotrichonympha, Spironympha and Microjoenia. Org. Divers. Evol. 2006;6:109–123. doi: 10.1016/j.ode.2005.07.004. DOI
Lewis J.L., Forschler B.T. A nondichotomous key to protist species identification of Reticulitermes (Isoptera: Rhinotermitidae) Ann. Entomol. Soc. Am. 2006;99:1028–1033. doi: 10.1603/0013-8746(2006)99[1028:ANKTPS]2.0.CO;2. DOI
Cornelius M.L., Osbrink W.L.A. Bioassay design and length of time in the laboratory affect intercolonial interactions of the Formosan subterranean termite (Isoptera, Rhinotermitidae) Insectes Soc. 2009;56:203–211. doi: 10.1007/s00040-009-0014-4. PubMed DOI PMC
Windeisen E., Strobel C., Wegener G. Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 2007;41:523–536. doi: 10.1007/s00226-007-0146-5. DOI
Tai V., James E.R., Nalepa C.A., Scheffrahn R.H., Perlman S.J., Keeling P.J. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl. Environ. Microbiol. 2015;81:1059–1070. doi: 10.1128/AEM.02945-14. PubMed DOI PMC
Duarte S., Duarte M., Borges P.A.V., Nunes L. Dietary-driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clément. J. Appl. Entomol. 2017;141:300–307. doi: 10.1111/jen.12331. DOI
Bignell D.E., Anderson J.M. Determination of pH and oxygen status in the guts of lower and higher termites. J. Insect Physiol. 1980;26:183–188. doi: 10.1016/0022-1910(80)90079-7. DOI