Effects of Process Cutting Parameters on the Ti-6Al-4V Turning with Monolithic Driven Rotary Tool
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ITMS code: 313011ASY4
Strategic implementation of additive technologies to strengthen the intervention capacities caused by the COVID-19 pandemic
PubMed
35897614
PubMed Central
PMC9331866
DOI
10.3390/ma15155181
PII: ma15155181
Knihovny.cz E-zdroje
- Klíčová slova
- actively driven tool, rotary tool, titanium alloy, turning,
- Publikační typ
- časopisecké články MeSH
Machining with rotating tools appears to be an efficient method that employs a non-standard kinematic turning scheme. It is used in the machining of materials that we classify in the category of difficult to machine. The titanium alloy Ti-6Al-4V, which is widely used in industry and transportation, is an example of such material. Rotary tool machining of titanium alloys has not been the subject of many studies. Additionally, if researchers were dissatisfied with their findings, the reason may not be the kinematic machining scheme itself but rather the tool design and the choice of cutting parameters. When tools are constructed of several components, inaccuracies in production and assembly can arise, resulting in deviations in the cutting part area. A monolithic driven rotary tool eliminates these factors. In the machining process, however, it may react differently from multi-component tools. The presented work focuses on the research of the technology for machining titanium alloy Ti-6Al-4V using a monolithic driven rotary tool. The primary goal is to gather data on the impact of cutting parameters on the machining process. The cutting force and the consequent integrity of the workpiece surface are used to monitor the process. The speed of workpiece rotation has the greatest impact on the process; as it increases, the cutting force increases, as do the values of the surface roughness. In the experiment, lower surface roughness values were attained by increasing the feed parameter and the depth of cut. This may predetermine the inclusion of a kinematic scheme in highly productive technologies.
Zobrazit více v PubMed
Ezugwu E.O., Wang Z.M. Titanium Alloys and Their Machinability—A Review. J. Mater. Process. Technol. 1997;68:262–274. doi: 10.1016/S0924-0136(96)00030-1. DOI
Ezugwu E.O., Bonney J., Yamane Y. An Overview of the Machinability of Aeroengine Alloys. J. Mater. Process. Technol. 2003;134:233–253. doi: 10.1016/S0924-0136(02)01042-7. DOI
Arrazola P.J., Garay A., Iriarte L.M., Armendia M., Marya S., le Maître F. Machinability of Titanium Alloys (Ti6Al4V and Ti555.3) J. Mater. Process. Technol. 2009;209:2223–2230. doi: 10.1016/j.jmatprotec.2008.06.020. DOI
Kaulfersch F., Roeder M. Cutting of Nickel-Based Superalloys with Rotating Indexable Inserts. Adv. Mater. Res. 2013;769:116–123. doi: 10.4028/www.scientific.net/AMR.769.116. DOI
Dhananchezian M., Pradeep Kumar M. Cryogenic Turning of the Ti–6Al–4V Alloy with Modified Cutting Tool Inserts. Cryogenics. 2011;51:34–40. doi: 10.1016/j.cryogenics.2010.10.011. DOI
Venugopal K.A., Paul S., Chattopadhyay A.B. Growth of Tool Wear in Turning of Ti-6Al-4V Alloy under Cryogenic Cooling. Wear. 2007;262:1071–1078. doi: 10.1016/j.wear.2006.11.010. DOI
Ezugwu E.O. Improvements in the Machining of Aero-Engine Alloys Using Self-Propelled Rotary Tooling Technique. J. Mater. Process. Technol. 2007;185:60–71. doi: 10.1016/j.jmatprotec.2006.03.112. DOI
Sasahara H., Kato A., Nakajima H., Yamamoto H., Muraki T., Tsutsumi M. High-Speed Rotary Cutting of Difficult-to-Cut Materials on Multitasking Lathe. Int. J. Mach. Tools Manuf. 2008;48:841–850. doi: 10.1016/j.ijmachtools.2007.12.002. DOI
Bermingham M.J., Kirsch J., Sun S., Palanisamy S., Dargusch M.S. New Observations on Tool Life, Cutting Forces and Chip Morphology in Cryogenic Machining Ti-6Al-4V. Int. J. Mach. Tools Manuf. 2011;51:500–511. doi: 10.1016/j.ijmachtools.2011.02.009. DOI
Sun S., Brandt M., Dargusch M.S. Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys. Int. J. Mach. Tools Manuf. 2009;49:561–568. doi: 10.1016/j.ijmachtools.2009.02.008. DOI
Lei S., Liu W. High-Speed Machining of Titanium Alloys Using the Driven Rotary Tool. Int. J. Mach. Tools Manuf. 2002;42:653–661. doi: 10.1016/S0890-6955(02)00012-3. DOI
Rahim E.A., Sasahara H. A Study of the Effect of Palm Oil as MQL Lubricant on High Speed Drilling of Titanium Alloys. Tribol. Int. 2011;44:309–317. doi: 10.1016/j.triboint.2010.10.032. DOI
Nandy A.K., Gowrishankar M.C., Paul S. Some Studies on High-Pressure Cooling in Turning of Ti–6Al–4V. Int. J. Mach. Tools Manuf. 2009;49:182–198. doi: 10.1016/j.ijmachtools.2008.08.008. DOI
Liang X., Liu Z., Liu W., Li X. Sustainability Assessment of Dry Turning Ti-6Al-4V Employing Uncoated Cemented Carbide Tools as Clean Manufacturing Process. J. Clean. Prod. 2019;214:279–289. doi: 10.1016/j.jclepro.2018.12.196. DOI
Kishawy H.A., Ahmed W., Mohany A. Analytical Modeling of Metal Cutting Process with Self-Propelled Rotary Tools. CIRP J. Manuf. Sci. Technol. 2021;33:115–122. doi: 10.1016/j.cirpj.2021.03.002. DOI
Suzuki N., Suzuki T., An R., Ukai K., Shamoto E., Hasegawa Y., Horiike N. Force Prediction in Cutting Operations with Self-Propelled Rotary Tools Considering Bearing Friction. Procedia CIRP. 2014;14:125–129. doi: 10.1016/j.procir.2014.03.033. DOI
Yujiang L., Tao C. Research on Cutting Performance in High-Speed Milling of TC11 Titanium Alloy Using Self-Propelled Rotary Milling Cutters. Int. J. Adv. Manuf. Technol. 2021;116:2125–2135. doi: 10.1007/s00170-021-07592-4. DOI
Ahmed W., Hegab H., Mohany A., Kishawy H. Analysis and Optimization of Machining Hardened Steel Aisi 4140 with Self-Propelled Rotary Tools. Materials. 2021;14:6106. doi: 10.3390/ma14206106. PubMed DOI PMC
Umer U., Hammad Mian S., Khan Mohammed M., Haider Abidi M., Moiduddin K., Kishawy H. Tool Wear Prediction When Machining with Self-Propelled Rotary Tools. Materials. 2022;15:4059. doi: 10.3390/ma15124059. PubMed DOI PMC
Harun S., Shibasaka T., Moriwaki T. Cutting Temperature Measurement in Turning with Actively Driven Rotary Tool. Key Eng. Mater. 2009;389–390:138–143. doi: 10.4028/www.scientific.net/KEM.389-390.138. DOI
Kishawy H.A., Wilcox J. Tool Wear and Chip Formation during Hard Turning with Self-Propelled Rotary Tools. Int. J. Mach. Tools Manuf. 2003;43:433–439. doi: 10.1016/S0890-6955(02)00239-0. DOI
Czán A., Joch R., Šajgalík M., Holubják J., Horák A., Timko P., Valíček J., Kušnerová M., Harničárová M. Experimental Study and Verification of New Monolithic Rotary Cutting Tool for an Active Driven Rotation Machining. Materials. 2022;15:1630. doi: 10.3390/ma15051630. PubMed DOI PMC
Uhlmann E., Kaulfersch F., Roeder M. Turning of High-Performance Materials with Rotating Indexable Inserts. Procedia CIRP. 2014;14:610–615. doi: 10.1016/j.procir.2014.03.028. DOI
Olgun U., Budak E. Machining of Difficult-to-Cut-Alloys Using Rotary Turning Tools. Procedia CIRP. 2013;8:81–87. doi: 10.1016/j.procir.2013.06.069. DOI
Kossakowska J., Jemielniak K. Application of Self-Propelled Rotary Tools for Turning of Difficult-Tomachine Materials. Procedia CIRP. 2012;1:425–430. doi: 10.1016/j.procir.2012.04.076. DOI
Konečná R., Medvecká D., Nicoletto G. Structure, Texture and Tensile Properties of Ti6Al4V Produced by Selective Laser Melting. Prod. Eng. Arch. 2019;25:60–65. doi: 10.30657/pea.2019.25.12. DOI
Ulutan D., Ozel T. Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review. Int. J. Mach. Tools Manuf. 2011;51:250–280. doi: 10.1016/j.ijmachtools.2010.11.003. DOI
Khanna N., Zadafiya K., Patel T., Kaynak Y., Rahman Rashid R.A., Vafadar A. Review on Machining of Additively Manufactured Nickel and Titanium Alloys. J. Mater. Res. Technol. 2021;15:3192–3221. doi: 10.1016/j.jmrt.2021.09.088. DOI
Pimenov D.Y., Mia M., Gupta M.K., Machado A.R., Tomaz Í.V., Sarikaya M., Wojciechowski S., Mikolajczyk T., Kaplonek W. Improvement of Machinability of Ti and Its Alloys Using Cooling-Lubrication Techniques: A Review and Future Prospect. J. Mater. Res. Technol. 2021;11:719–753. doi: 10.1016/j.jmrt.2021.01.031. DOI
Antony J. Design of Experiments for Engineers and Scientists. Elsevier; Amsterdam, The Netherlands: 2014. Screening Designs; pp. 51–62. DOI