• This record comes from PubMed

Experimental Study and Verification of New Monolithic Rotary Cutting Tool for an Active Driven Rotation Machining

. 2022 Feb 22 ; 15 (5) : . [epub] 20220222

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
APVV 15-0405 Slovak Research and Development Agency
313011ASY4 the University of Žilina

Forced rotation turning appears to be an effective machining method due to higher tool life, time efficiency and acceptable quality. Several studies have been carried out to investigate the basic characteristics of forced rotation machining. So far, tools are used whose design included several components. However, such tools may generate vibrations, which are undesirable in the process. In engineering practice, most vibration problems are solved by reducing the cutting parameters (cutting speed and feed rate), which reduces machining productivity. For this reason, a new type of monolithic rotary tool has been designed that eliminates the design complexity and high assembly accuracy requirements of current rotary tools. Based on the performed experimental research, it is possible to define the influence of cutting parameters on the cutting force. Next, the equation of the cutting force and the resulting roughness of the machined surface was determined. In the introduction, the results of the analysis of machining parameters with a rotary tool were added. The presented solution fundamentally validates the new monolithic tool for forced rotation technology and defines its application for different machining materials.

See more in PubMed

Kaulfersch F., Roeder M. Cutting of nickel-based superalloys with rotating indexable inserts. Adv. Mat. Res. 2013;769:116–123. doi: 10.4028/www.scientific.net/AMR.769.116. DOI

Lei S., Liu W. High-speed machining of titanium alloys using the driven rotary tool. Int. J. Mach. Tools Manuf. 2002;42:653–661. doi: 10.1016/S0890-6955(02)00012-3. DOI

Uhlmann E., Kaulfersch F., Roeder M. Turning of high-performance materials with rotating indexable inserts. Procedia CIRP. 2014;14:610–615. doi: 10.1016/j.procir.2014.03.028. DOI

Yamamoto H., Satake K., Sasahara H., Narita T., Tsutsumi M., Muraki T. Thermal behavior and tool failures on rotary cutting of difficult-to-cut materials utilizing multi tasking lathe. Key Eng. Mater. 2010;447:806–810. doi: 10.4028/www.scientific.net/KEM.447-448.806. DOI

Hosokawa A., Yoshimatsu H., Koyano T., Furumoto T., Hashimoto Y. Turning of difficult-to-machine materials with an actively driven rotary tool (ADRT)—Proposition of reciprocating turning contingent on fundamental cutting characteristics. J. Adv. Mech. Des. Syst. Manuf. 2018;12:JAMDSM0103. doi: 10.1299/jamdsm.2018jamdsm0103. DOI

Hosokawa A., Ueda T., Onishi R., Tanaka R., Furumoto T. Turning of difficult-to-machine materials with actively driven rotary tool. CIRP Ann. Manuf. Technol. 2010;59:89–92. doi: 10.1016/j.cirp.2010.03.053. DOI

Joch R., Pilc J., Stančeková D., Miturska I., Görögová I. Evaluation of Surface Roughness after Actively Rotary Turning Method. Mater. Sci. Forum. 2020;994:11–18. doi: 10.4028/www.scientific.net/MSF.994.11. DOI

Ezugwu E.O. Improvements in the machining of aero-engine alloys using self-propelled rotary tooling technique. J. Mater. Process. Technol. 2007;185:60–71. doi: 10.1016/j.jmatprotec.2006.03.112. DOI

Čep R., Janásek A., Martinický B., Sadílek M. Cutting tool life tests of ceramic inserts for car engine sleeves. Teh. Vjesn. 2011;18:203–209.

Sasahara H., Kato A., Nakajima H., Yamamoto H., Muraki T., Tsutsumi M. High-speed rotary cutting of difficult-to-cut materials on multitasking lathe. Int. J. Mach. Tools Manuf. 2008;48:841–850. doi: 10.1016/j.ijmachtools.2007.12.002. DOI

Ahmed W., Hegab H., Kishawy H.A., Mohany A. Estimation of temperature in machining with self-propelled rotary tools using finite element method. J. Manuf. Process. 2021;61:100–110. doi: 10.1016/j.jmapro.2020.10.080. DOI

Nguyen T.T., Duong Q.D., Mia M. Sustainability-based optimization of the rotary turning of the hardened steel. Metals. 2020;10:939. doi: 10.3390/met10070939. DOI

Kishawy H.A., Ahmed W., Mohany A. Analytical modeling of metal cutting process with self-propelled rotary tools. CIRP J. Manuf. Sci. Technol. 2021;33:115–122. doi: 10.1016/j.cirpj.2021.03.002. DOI

Ahmed W., Hegab H., Mohany A., Kishawy H. Analysis and Optimization of Machining Hardened Steel AISI 4140 with Self-Propelled Rotary Tools. Materials. 2021;14:6106. doi: 10.3390/ma14206106. PubMed DOI PMC

Dessoly V., Melkote S.N., Lescalier C. Modeling and verification of cutting tool temperatures in rotary tool turning of hardened steel. Int. J. Mach. Tools Manuf. 2004;44:1463–1470. doi: 10.1016/j.ijmachtools.2004.05.007. DOI

Zlámal T., Petrů J., Vortel O., Pagáč M., Krajkovič P. Mechanisms of cutting blade wear and their influence on cutting ability of the tool during machining special alloys. Adv. Sci. Technol. Res. J. 2016;10:144–150. doi: 10.12913/22998624/64074. DOI

Ekinović S., Dolinšek S., Begović E. Machinability of 90MnCrV8 steel during high-speed machining. J. Mater. Process. Technol. 2005;162:603–608. doi: 10.1016/j.jmatprotec.2005.02.178. DOI

Isik Y. Investigating the machinability of tool steels in turning operations. Mater. Des. 2007;28:1417–1424. doi: 10.1016/j.matdes.2006.03.025. DOI

Lacková P., Žabecká D., Milkovič O., Škrobian M., Bajcura M. Effect of Technologies Processing on Material Properties of Selected Aluminium Alloys. Mater. Sci. Forum. 2014;782:394–397. doi: 10.4028/www.scientific.net/MSF.782.394. DOI

Özdemir M., Kaya M., Akyildiz H. Analysis of surface roughness and cutting forces in hard turning of 42CrMo4 steel using Taguchi and RSM method. Mechanika. 2020;26:231–241. doi: 10.5755/j01.mech.26.3.23600. DOI

Bronis M., Miko E., Nowakowski L. Analyzing the Effects of the Kinematic System on the Quality of Holes Drilled in 42CrMo4 + QT Steel. Materials. 2021;14:4046. doi: 10.3390/ma14144046. PubMed DOI PMC

Bajor T., Kulakowska A., Dyja H. Analysis of the rolling process of alloy 6005 in a three-high skew rolling mill. Materials. 2020;13:1114. doi: 10.3390/ma13051114. PubMed DOI PMC

Olgun U., Budak E. Machining of difficult-to-cut-alloys using rotary turning tools. Procedia CIRP. 2013;8:81–87. doi: 10.1016/j.procir.2013.06.069. DOI

Šajgalík M., Kušnerová M., Harničárová M., Valíček J., Czán A., Czánová T., Drbúl M., Boržan M., Kmec J. Analysis and prediction of the machining force depending on the parameters of trochoidal milling of hardened steel. Appl. Sci. 2020;10:1788. doi: 10.3390/app10051788. DOI

Joch R., Pilc J., Daniš I., Drbúl M., Krajčoviech S. Analysis of surface roughness in turning process using rotating tool with chip breaker for specific shapes of automotive transmission shafts. Transp. Res. Proc. 2019;40:295–301. doi: 10.1016/j.trpro.2019.07.044. DOI

Akhyar G., Harun S., Hamni A. Surface Roughness Values of Magnesium Alloy AZ31 When Turning by Using Rotary Cutting Tool. Insist. 2016;1:54–59. doi: 10.23960/ins.v1i1.20. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...