Experimental Study and Verification of New Monolithic Rotary Cutting Tool for an Active Driven Rotation Machining
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV 15-0405
Slovak Research and Development Agency
313011ASY4
the University of Žilina
PubMed
35268861
PubMed Central
PMC8911487
DOI
10.3390/ma15051630
PII: ma15051630
Knihovny.cz E-zdroje
- Klíčová slova
- actively driven tool, cutting force, rotary tool, surface texture, turning,
- Publikační typ
- časopisecké články MeSH
Forced rotation turning appears to be an effective machining method due to higher tool life, time efficiency and acceptable quality. Several studies have been carried out to investigate the basic characteristics of forced rotation machining. So far, tools are used whose design included several components. However, such tools may generate vibrations, which are undesirable in the process. In engineering practice, most vibration problems are solved by reducing the cutting parameters (cutting speed and feed rate), which reduces machining productivity. For this reason, a new type of monolithic rotary tool has been designed that eliminates the design complexity and high assembly accuracy requirements of current rotary tools. Based on the performed experimental research, it is possible to define the influence of cutting parameters on the cutting force. Next, the equation of the cutting force and the resulting roughness of the machined surface was determined. In the introduction, the results of the analysis of machining parameters with a rotary tool were added. The presented solution fundamentally validates the new monolithic tool for forced rotation technology and defines its application for different machining materials.
Zobrazit více v PubMed
Kaulfersch F., Roeder M. Cutting of nickel-based superalloys with rotating indexable inserts. Adv. Mat. Res. 2013;769:116–123. doi: 10.4028/www.scientific.net/AMR.769.116. DOI
Lei S., Liu W. High-speed machining of titanium alloys using the driven rotary tool. Int. J. Mach. Tools Manuf. 2002;42:653–661. doi: 10.1016/S0890-6955(02)00012-3. DOI
Uhlmann E., Kaulfersch F., Roeder M. Turning of high-performance materials with rotating indexable inserts. Procedia CIRP. 2014;14:610–615. doi: 10.1016/j.procir.2014.03.028. DOI
Yamamoto H., Satake K., Sasahara H., Narita T., Tsutsumi M., Muraki T. Thermal behavior and tool failures on rotary cutting of difficult-to-cut materials utilizing multi tasking lathe. Key Eng. Mater. 2010;447:806–810. doi: 10.4028/www.scientific.net/KEM.447-448.806. DOI
Hosokawa A., Yoshimatsu H., Koyano T., Furumoto T., Hashimoto Y. Turning of difficult-to-machine materials with an actively driven rotary tool (ADRT)—Proposition of reciprocating turning contingent on fundamental cutting characteristics. J. Adv. Mech. Des. Syst. Manuf. 2018;12:JAMDSM0103. doi: 10.1299/jamdsm.2018jamdsm0103. DOI
Hosokawa A., Ueda T., Onishi R., Tanaka R., Furumoto T. Turning of difficult-to-machine materials with actively driven rotary tool. CIRP Ann. Manuf. Technol. 2010;59:89–92. doi: 10.1016/j.cirp.2010.03.053. DOI
Joch R., Pilc J., Stančeková D., Miturska I., Görögová I. Evaluation of Surface Roughness after Actively Rotary Turning Method. Mater. Sci. Forum. 2020;994:11–18. doi: 10.4028/www.scientific.net/MSF.994.11. DOI
Ezugwu E.O. Improvements in the machining of aero-engine alloys using self-propelled rotary tooling technique. J. Mater. Process. Technol. 2007;185:60–71. doi: 10.1016/j.jmatprotec.2006.03.112. DOI
Čep R., Janásek A., Martinický B., Sadílek M. Cutting tool life tests of ceramic inserts for car engine sleeves. Teh. Vjesn. 2011;18:203–209.
Sasahara H., Kato A., Nakajima H., Yamamoto H., Muraki T., Tsutsumi M. High-speed rotary cutting of difficult-to-cut materials on multitasking lathe. Int. J. Mach. Tools Manuf. 2008;48:841–850. doi: 10.1016/j.ijmachtools.2007.12.002. DOI
Ahmed W., Hegab H., Kishawy H.A., Mohany A. Estimation of temperature in machining with self-propelled rotary tools using finite element method. J. Manuf. Process. 2021;61:100–110. doi: 10.1016/j.jmapro.2020.10.080. DOI
Nguyen T.T., Duong Q.D., Mia M. Sustainability-based optimization of the rotary turning of the hardened steel. Metals. 2020;10:939. doi: 10.3390/met10070939. DOI
Kishawy H.A., Ahmed W., Mohany A. Analytical modeling of metal cutting process with self-propelled rotary tools. CIRP J. Manuf. Sci. Technol. 2021;33:115–122. doi: 10.1016/j.cirpj.2021.03.002. DOI
Ahmed W., Hegab H., Mohany A., Kishawy H. Analysis and Optimization of Machining Hardened Steel AISI 4140 with Self-Propelled Rotary Tools. Materials. 2021;14:6106. doi: 10.3390/ma14206106. PubMed DOI PMC
Dessoly V., Melkote S.N., Lescalier C. Modeling and verification of cutting tool temperatures in rotary tool turning of hardened steel. Int. J. Mach. Tools Manuf. 2004;44:1463–1470. doi: 10.1016/j.ijmachtools.2004.05.007. DOI
Zlámal T., Petrů J., Vortel O., Pagáč M., Krajkovič P. Mechanisms of cutting blade wear and their influence on cutting ability of the tool during machining special alloys. Adv. Sci. Technol. Res. J. 2016;10:144–150. doi: 10.12913/22998624/64074. DOI
Ekinović S., Dolinšek S., Begović E. Machinability of 90MnCrV8 steel during high-speed machining. J. Mater. Process. Technol. 2005;162:603–608. doi: 10.1016/j.jmatprotec.2005.02.178. DOI
Isik Y. Investigating the machinability of tool steels in turning operations. Mater. Des. 2007;28:1417–1424. doi: 10.1016/j.matdes.2006.03.025. DOI
Lacková P., Žabecká D., Milkovič O., Škrobian M., Bajcura M. Effect of Technologies Processing on Material Properties of Selected Aluminium Alloys. Mater. Sci. Forum. 2014;782:394–397. doi: 10.4028/www.scientific.net/MSF.782.394. DOI
Özdemir M., Kaya M., Akyildiz H. Analysis of surface roughness and cutting forces in hard turning of 42CrMo4 steel using Taguchi and RSM method. Mechanika. 2020;26:231–241. doi: 10.5755/j01.mech.26.3.23600. DOI
Bronis M., Miko E., Nowakowski L. Analyzing the Effects of the Kinematic System on the Quality of Holes Drilled in 42CrMo4 + QT Steel. Materials. 2021;14:4046. doi: 10.3390/ma14144046. PubMed DOI PMC
Bajor T., Kulakowska A., Dyja H. Analysis of the rolling process of alloy 6005 in a three-high skew rolling mill. Materials. 2020;13:1114. doi: 10.3390/ma13051114. PubMed DOI PMC
Olgun U., Budak E. Machining of difficult-to-cut-alloys using rotary turning tools. Procedia CIRP. 2013;8:81–87. doi: 10.1016/j.procir.2013.06.069. DOI
Šajgalík M., Kušnerová M., Harničárová M., Valíček J., Czán A., Czánová T., Drbúl M., Boržan M., Kmec J. Analysis and prediction of the machining force depending on the parameters of trochoidal milling of hardened steel. Appl. Sci. 2020;10:1788. doi: 10.3390/app10051788. DOI
Joch R., Pilc J., Daniš I., Drbúl M., Krajčoviech S. Analysis of surface roughness in turning process using rotating tool with chip breaker for specific shapes of automotive transmission shafts. Transp. Res. Proc. 2019;40:295–301. doi: 10.1016/j.trpro.2019.07.044. DOI
Akhyar G., Harun S., Hamni A. Surface Roughness Values of Magnesium Alloy AZ31 When Turning by Using Rotary Cutting Tool. Insist. 2016;1:54–59. doi: 10.23960/ins.v1i1.20. DOI
Effects of Process Cutting Parameters on the Ti-6Al-4V Turning with Monolithic Driven Rotary Tool