• This record comes from PubMed

Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19

. 2017 Mar 10 ; 8 () : 14635. [epub] 20170310

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The transport of peroxisomal membrane proteins (PMPs) requires the soluble PEX19 protein as chaperone and import receptor. Recognition of cargo PMPs by the C-terminal domain (CTD) of PEX19 is required for peroxisome biogenesis in vivo. Farnesylation at a C-terminal CaaX motif in PEX19 enhances the PMP interaction, but the underlying molecular mechanisms are unknown. Here, we report the NMR-derived structure of the farnesylated human PEX19 CTD, which reveals that the farnesyl moiety is buried in an internal hydrophobic cavity. This induces substantial conformational changes that allosterically reshape the PEX19 surface to form two hydrophobic pockets for the recognition of conserved aromatic/aliphatic side chains in PMPs. Mutations of PEX19 residues that either mediate farnesyl contacts or are directly involved in PMP recognition abolish cargo binding and cannot complement a ΔPEX19 phenotype in human Zellweger patient fibroblasts. Our results demonstrate an allosteric mechanism for the modulation of protein function by farnesylation.

See more in PubMed

Steinberg S. J. et al.. Peroxisome biogenesis disorders. Biochim. Biophys. Acta 1763, 1733–1748 (2006). PubMed

Rucktaschel R., Girzalsky W. & Erdmann R. Protein import machineries of peroxisomes. Biochim. Biophys. Acta 1808, 892–900 (2011). PubMed

Emmanouilidis L., Gopalswamy M., Passon D. M., Wilmanns M. & Sattler M. Structural biology of the import pathways of peroxisomal matrix proteins. Biochim. Biophys. Acta 1863, 804–813 (2016). PubMed

Meinecke M. et al.. The peroxisomal importomer constitutes a large and highly dynamic pore. Nat. Cell Biol. 12, 273–277 (2010). PubMed

Jones J. M., Morrell J. C. & Gould S. J. Pex19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J. Cell Biol. 164, 57–67 (2004). PubMed PMC

Fang Y., Morrell J. C., Jones J. M. & Gould S. J. Pex3 functions as a pex19 docking factor in the import of class i peroxisomal membrane proteins. J. Cell Biol. 164, 863–875 (2004). PubMed PMC

Matsuzono Y. & Fujiki Y. In vitro transport of membrane proteins to peroxisomes by shuttling receptor pex19p. J. Biol. Chem. 281, 36–42 (2006). PubMed

Chen Y. et al.. Hydrophobic handoff for direct delivery of peroxisome tail-anchored proteins. Nat. Commun. 5, 5790 (2014). PubMed

Fujiki Y., Matsuzono Y., Matsuzaki T. & Fransen M. Import of peroxisomal membrane proteins: the interplay of pex3p- and pex19p-mediated interactions. Biochim. Biophys. Acta 1763, 1639–1646 (2006). PubMed

Banerjee S. K., Kessler P. S., Saveria T. & Parsons M. Identification of trypanosomatid pex19: Functional characterization reveals impact on cell growth and glycosome size and number. Mol. Biochem. Parasitol. 142, 47–55 (2005). PubMed

Manne V. et al.. Identification and preliminary characterization of protein-cysteine farnesyltransferase. Proc. Natl Acad. Sci. USA 87, 7541–7545 (1990). PubMed PMC

Magee T. & Seabra M. C. Fatty acylation and prenylation of proteins: what's hot in fat. Curr. Opin. Cell Biol. 17, 190–196 (2005). PubMed

Hancock J. F. Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell Biol. 4, 373–384 (2003). PubMed

Kammerer S. et al.. Genomic organization and molecular characterization of a gene encoding hspxf, a human peroxisomal farnesylated protein. Genomics 45, 200–210 (1997). PubMed

Matsuzono Y. et al.. Human pex19: Cdna cloning by functional complementation, mutation analysis in a patient with zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc. Natl. Acad. Sci. USA 96, 2116–2121 (1999). PubMed PMC

Rucktaschel R. et al.. Farnesylation of pex19p is required for its structural integrity and function in peroxisome biogenesis. J. Biol. Chem. 284, 20885–20896 (2009). PubMed PMC

Sato Y. et al.. Structural basis for docking of peroxisomal membrane protein carrier pex19p onto its receptor pex3p. EMBO J. 29, 4083–4093 (2010). PubMed PMC

Schmidt F. et al.. Insights into peroxisome function from the structure of pex3 in complex with a soluble fragment of pex19. J. Biol. Chem. 285, 25410–25417 (2010). PubMed PMC

Neufeld C. et al.. Structural basis for competitive interactions of pex14 with the import receptors pex5 and pex19. EMBO J. 28, 745–754 (2009). PubMed PMC

Fransen M. et al.. Analysis of human pex19p's domain structure by pentapeptide scanning mutagenesis. J. Mol. Biol. 346, 1275–1286 (2005). PubMed

Schueller N. et al.. The peroxisomal receptor pex19p forms a helical mpts recognition domain. EMBO J. 29, 2491–2500 (2010). PubMed PMC

Krissinel E. & Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007). PubMed

Sacksteder K. A. et al.. Pex19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J. Cell Biol. 148, 931–944 (2000). PubMed PMC

Halbach A. et al.. Function of the pex19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast. Pmp targeting is evolutionarily conserved. J. Biol. Chem. 280, 21176–21182 (2005). PubMed

Dominguez C., Boelens R. & Bonvin A. M. Haddock: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003). PubMed

Chandra A. et al.. The gdi-like solubilizing factor pdedelta sustains the spatial organization and signalling of ras family proteins. Nat. Cell Biol. 14, 148–158 (2012). PubMed

Ismail S. A. et al.. Arl2-gtp and arl3-gtp regulate a gdi-like transport system for farnesylated cargo. Nat. Chem. Biol. 7, 942–949 (2011). PubMed

Lane K. T. & Beese L. S. Thematic review series: Lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type i. J. Lipid Res. 47, 681–699 (2006). PubMed

Caplan A. J., Tsai J., Casey P. J. & Douglas M. G. Farnesylation of ydj1p is required for function at elevated growth temperatures in Saccharomyces cerevisiae. J. Biol. Chem. 267, 18890–18895 (1992). PubMed

Gotte K. et al.. Pex19p, a farnesylated protein essential for peroxisome biogenesis. Mol. Cell. Biol. 18, 616–628 (1998). PubMed PMC

Delaglio F. et al.. Nmrpipe: a multidimensional spectral processing system based on unix pipes. J. Biomol. NMR 6, 277–293 (1995). PubMed

Goddard T. & Kneller D. Sparky 3 (University of California, San Francisco).

Jung Y. S. & Zweckstetter M. Mars—robust automatic backbone assignment of proteins. J. Biomol. NMR 30, 11–23 (2004). PubMed

Sattler M., Schleucher J. & Griesinger C. Heteronuclear multidimensional nmr experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

Farrow N. A. et al.. Backbone dynamics of a free and phosphopeptide-complexed src homology 2 domain studied by 15n nmr relaxation. Biochemistry 33, 5984–6003 (1994). PubMed

Madl T., Bermel W. & Zangger K. Use of relaxation enhancements in a paramagnetic environment for the structure determination of proteins using nmr spectroscopy. Angew. Chem. Int. Ed. Engl. 48, 8259–8262 (2009). PubMed

Hocking H. G., Zangger K. & Madl T. Studying the structure and dynamics of biomolecules by using soluble paramagnetic probes. Chemphyschem. 14, 3082–3094 (2013). PubMed PMC

Gobl C., Madl T., Simon B. & Sattler M. Nmr approaches for structural analysis of multidomain proteins and complexes in solution. Prog. Nucl. Magn. Reson. Spectrosc. 80, 26–63 (2014). PubMed

Guntert P. Automated structure determination from nmr spectra. Eur. Biophys. J. 38, 129–143 (2009). PubMed

Schuttelkopf A. W. & van Aalten D. M. Prodrg: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004). PubMed

Shen Y., Delaglio F., Cornilescu G. & Bax A. Talos+: a hybrid method for predicting protein backbone torsion angles from nmr chemical shifts. J. Biomol. NMR 44, 213–223 (2009). PubMed PMC

Brunger A. T. et al.. Crystallography & nmr system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998). PubMed

Huybrechts S. J. et al.. Identification of a novel PEX14 mutation in Zellweger syndrome. J. Med. Genet. 45, 376–383 (2008). PubMed

Saveria T. et al.. Conservation of pex19-binding motifs required for protein targeting to mammalian peroxisomal and trypanosome glycosomal membranes. Eukaryot. Cell 6, 1439–1449 (2007). PubMed PMC

Will G. K. et al.. Identification and characterization of the human orthologue of yeast pex14p. Mol. Cell. Biol. 19, 2265–2277 (1999). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...