Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28281558
PubMed Central
PMC5353646
DOI
10.1038/ncomms14635
PII: ncomms14635
Knihovny.cz E-resources
- MeSH
- Alkyl and Aryl Transferases chemistry genetics metabolism MeSH
- Allosteric Regulation MeSH
- Gene Expression MeSH
- Fibroblasts metabolism pathology MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Protein Interaction Domains and Motifs MeSH
- Protein Conformation, alpha-Helical MeSH
- Protein Conformation, beta-Strand MeSH
- Humans MeSH
- Membrane Proteins chemistry genetics metabolism MeSH
- Mutation MeSH
- Peroxisomes metabolism pathology MeSH
- Protein Processing, Post-Translational * MeSH
- Prenylation MeSH
- Recombinant Proteins chemistry genetics metabolism MeSH
- Saccharomyces cerevisiae Proteins chemistry genetics metabolism MeSH
- Saccharomyces cerevisiae enzymology genetics MeSH
- Amino Acid Sequence MeSH
- Sequence Homology, Amino Acid MeSH
- Sequence Alignment MeSH
- Molecular Docking Simulation MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Zellweger Syndrome genetics metabolism pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Alkyl and Aryl Transferases MeSH
- Membrane Proteins MeSH
- p21(ras) farnesyl-protein transferase MeSH Browser
- PEX19 protein, human MeSH Browser
- Recombinant Proteins MeSH
- Saccharomyces cerevisiae Proteins MeSH
The transport of peroxisomal membrane proteins (PMPs) requires the soluble PEX19 protein as chaperone and import receptor. Recognition of cargo PMPs by the C-terminal domain (CTD) of PEX19 is required for peroxisome biogenesis in vivo. Farnesylation at a C-terminal CaaX motif in PEX19 enhances the PMP interaction, but the underlying molecular mechanisms are unknown. Here, we report the NMR-derived structure of the farnesylated human PEX19 CTD, which reveals that the farnesyl moiety is buried in an internal hydrophobic cavity. This induces substantial conformational changes that allosterically reshape the PEX19 surface to form two hydrophobic pockets for the recognition of conserved aromatic/aliphatic side chains in PMPs. Mutations of PEX19 residues that either mediate farnesyl contacts or are directly involved in PMP recognition abolish cargo binding and cannot complement a ΔPEX19 phenotype in human Zellweger patient fibroblasts. Our results demonstrate an allosteric mechanism for the modulation of protein function by farnesylation.
EMBL Hamburg Notkestr 85 Geb 25A 22607 Hamburg Germany
Institute of Molecular Biology and Biochemisty Medical University of Graz Graz 8010 Austria
See more in PubMed
Steinberg S. J. et al.. Peroxisome biogenesis disorders. Biochim. Biophys. Acta 1763, 1733–1748 (2006). PubMed
Rucktaschel R., Girzalsky W. & Erdmann R. Protein import machineries of peroxisomes. Biochim. Biophys. Acta 1808, 892–900 (2011). PubMed
Emmanouilidis L., Gopalswamy M., Passon D. M., Wilmanns M. & Sattler M. Structural biology of the import pathways of peroxisomal matrix proteins. Biochim. Biophys. Acta 1863, 804–813 (2016). PubMed
Meinecke M. et al.. The peroxisomal importomer constitutes a large and highly dynamic pore. Nat. Cell Biol. 12, 273–277 (2010). PubMed
Jones J. M., Morrell J. C. & Gould S. J. Pex19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J. Cell Biol. 164, 57–67 (2004). PubMed PMC
Fang Y., Morrell J. C., Jones J. M. & Gould S. J. Pex3 functions as a pex19 docking factor in the import of class i peroxisomal membrane proteins. J. Cell Biol. 164, 863–875 (2004). PubMed PMC
Matsuzono Y. & Fujiki Y. In vitro transport of membrane proteins to peroxisomes by shuttling receptor pex19p. J. Biol. Chem. 281, 36–42 (2006). PubMed
Chen Y. et al.. Hydrophobic handoff for direct delivery of peroxisome tail-anchored proteins. Nat. Commun. 5, 5790 (2014). PubMed
Fujiki Y., Matsuzono Y., Matsuzaki T. & Fransen M. Import of peroxisomal membrane proteins: the interplay of pex3p- and pex19p-mediated interactions. Biochim. Biophys. Acta 1763, 1639–1646 (2006). PubMed
Banerjee S. K., Kessler P. S., Saveria T. & Parsons M. Identification of trypanosomatid pex19: Functional characterization reveals impact on cell growth and glycosome size and number. Mol. Biochem. Parasitol. 142, 47–55 (2005). PubMed
Manne V. et al.. Identification and preliminary characterization of protein-cysteine farnesyltransferase. Proc. Natl Acad. Sci. USA 87, 7541–7545 (1990). PubMed PMC
Magee T. & Seabra M. C. Fatty acylation and prenylation of proteins: what's hot in fat. Curr. Opin. Cell Biol. 17, 190–196 (2005). PubMed
Hancock J. F. Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell Biol. 4, 373–384 (2003). PubMed
Kammerer S. et al.. Genomic organization and molecular characterization of a gene encoding hspxf, a human peroxisomal farnesylated protein. Genomics 45, 200–210 (1997). PubMed
Matsuzono Y. et al.. Human pex19: Cdna cloning by functional complementation, mutation analysis in a patient with zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc. Natl. Acad. Sci. USA 96, 2116–2121 (1999). PubMed PMC
Rucktaschel R. et al.. Farnesylation of pex19p is required for its structural integrity and function in peroxisome biogenesis. J. Biol. Chem. 284, 20885–20896 (2009). PubMed PMC
Sato Y. et al.. Structural basis for docking of peroxisomal membrane protein carrier pex19p onto its receptor pex3p. EMBO J. 29, 4083–4093 (2010). PubMed PMC
Schmidt F. et al.. Insights into peroxisome function from the structure of pex3 in complex with a soluble fragment of pex19. J. Biol. Chem. 285, 25410–25417 (2010). PubMed PMC
Neufeld C. et al.. Structural basis for competitive interactions of pex14 with the import receptors pex5 and pex19. EMBO J. 28, 745–754 (2009). PubMed PMC
Fransen M. et al.. Analysis of human pex19p's domain structure by pentapeptide scanning mutagenesis. J. Mol. Biol. 346, 1275–1286 (2005). PubMed
Schueller N. et al.. The peroxisomal receptor pex19p forms a helical mpts recognition domain. EMBO J. 29, 2491–2500 (2010). PubMed PMC
Krissinel E. & Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007). PubMed
Sacksteder K. A. et al.. Pex19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J. Cell Biol. 148, 931–944 (2000). PubMed PMC
Halbach A. et al.. Function of the pex19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast. Pmp targeting is evolutionarily conserved. J. Biol. Chem. 280, 21176–21182 (2005). PubMed
Dominguez C., Boelens R. & Bonvin A. M. Haddock: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003). PubMed
Chandra A. et al.. The gdi-like solubilizing factor pdedelta sustains the spatial organization and signalling of ras family proteins. Nat. Cell Biol. 14, 148–158 (2012). PubMed
Ismail S. A. et al.. Arl2-gtp and arl3-gtp regulate a gdi-like transport system for farnesylated cargo. Nat. Chem. Biol. 7, 942–949 (2011). PubMed
Lane K. T. & Beese L. S. Thematic review series: Lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type i. J. Lipid Res. 47, 681–699 (2006). PubMed
Caplan A. J., Tsai J., Casey P. J. & Douglas M. G. Farnesylation of ydj1p is required for function at elevated growth temperatures in Saccharomyces cerevisiae. J. Biol. Chem. 267, 18890–18895 (1992). PubMed
Gotte K. et al.. Pex19p, a farnesylated protein essential for peroxisome biogenesis. Mol. Cell. Biol. 18, 616–628 (1998). PubMed PMC
Delaglio F. et al.. Nmrpipe: a multidimensional spectral processing system based on unix pipes. J. Biomol. NMR 6, 277–293 (1995). PubMed
Goddard T. & Kneller D. Sparky 3 (University of California, San Francisco).
Jung Y. S. & Zweckstetter M. Mars—robust automatic backbone assignment of proteins. J. Biomol. NMR 30, 11–23 (2004). PubMed
Sattler M., Schleucher J. & Griesinger C. Heteronuclear multidimensional nmr experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).
Farrow N. A. et al.. Backbone dynamics of a free and phosphopeptide-complexed src homology 2 domain studied by 15n nmr relaxation. Biochemistry 33, 5984–6003 (1994). PubMed
Madl T., Bermel W. & Zangger K. Use of relaxation enhancements in a paramagnetic environment for the structure determination of proteins using nmr spectroscopy. Angew. Chem. Int. Ed. Engl. 48, 8259–8262 (2009). PubMed
Hocking H. G., Zangger K. & Madl T. Studying the structure and dynamics of biomolecules by using soluble paramagnetic probes. Chemphyschem. 14, 3082–3094 (2013). PubMed PMC
Gobl C., Madl T., Simon B. & Sattler M. Nmr approaches for structural analysis of multidomain proteins and complexes in solution. Prog. Nucl. Magn. Reson. Spectrosc. 80, 26–63 (2014). PubMed
Guntert P. Automated structure determination from nmr spectra. Eur. Biophys. J. 38, 129–143 (2009). PubMed
Schuttelkopf A. W. & van Aalten D. M. Prodrg: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004). PubMed
Shen Y., Delaglio F., Cornilescu G. & Bax A. Talos+: a hybrid method for predicting protein backbone torsion angles from nmr chemical shifts. J. Biomol. NMR 44, 213–223 (2009). PubMed PMC
Brunger A. T. et al.. Crystallography & nmr system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998). PubMed
Huybrechts S. J. et al.. Identification of a novel PEX14 mutation in Zellweger syndrome. J. Med. Genet. 45, 376–383 (2008). PubMed
Saveria T. et al.. Conservation of pex19-binding motifs required for protein targeting to mammalian peroxisomal and trypanosome glycosomal membranes. Eukaryot. Cell 6, 1439–1449 (2007). PubMed PMC
Will G. K. et al.. Identification and characterization of the human orthologue of yeast pex14p. Mol. Cell. Biol. 19, 2265–2277 (1999). PubMed PMC