Methodology for the Implementation of Internal Standard to Laser-Induced Breakdown Spectroscopy Analysis of Soft Tissues
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-19526Y
Grantová Agentura České Republiky
1193819
GAUK
82p5
Action
FSI-S-20-6353
FSI
CEP - Centrální evidence projektů
LQ1601
Ministry of Education, Youth and Sports of the Czech Republic - CEITEC 2020
PubMed
33572796
PubMed Central
PMC7866291
DOI
10.3390/s21030900
PII: s21030900
Knihovny.cz E-zdroje
- Klíčová slova
- elemental mapping, laser-induced breakdown spectroscopy, murine kidneys, soft tissue ablation, zinc,
- MeSH
- buňky MeSH
- laserová terapie * MeSH
- lasery * MeSH
- referenční standardy MeSH
- spektrální analýza MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
The improving performance of the laser-induced breakdown spectroscopy (LIBS) triggered its utilization in the challenging topic of soft tissue analysis. Alterations of elemental content within soft tissues are commonly assessed and provide further insights in biological research. However, the laser ablation of soft tissues is a complex issue and demands a priori optimization, which is not straightforward in respect to a typical LIBS experiment. Here, we focus on implementing an internal standard into the LIBS elemental analysis of soft tissue samples. We achieve this by extending routine methodology for optimization of soft tissues analysis with a standard spiking method. This step enables a robust optimization procedure of LIBS experimental settings. Considering the implementation of LIBS analysis to the histological routine, we avoid further alterations of the tissue structure. Therefore, we propose a unique methodology of sample preparation, analysis, and subsequent data treatment, which enables the comparison of signal response from heterogenous matrix for different LIBS parameters. Additionally, a brief step-by-step process of optimization to achieve the highest signal-to-noise ratio (SNR) is described. The quality of laser-tissue interaction is investigated on the basis of the zinc signal response, while selected experimental parameters (e.g., defocus, gate delay, laser energy, and ambient atmosphere) are systematically modified.
Zobrazit více v PubMed
Fraga C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005;26:235–244. doi: 10.1016/j.mam.2005.07.013. PubMed DOI
Rattanachaiwong S., Singer P. Diets and Diet. Therapy: Trace Elements. Elsevier; Amsterdam, The Netherlands: 2019.
Gomez N.N., Biaggio V.S., Ciminari M.E., Chaca M.V.P., Álvarez S.M. Nutritional Deficiency. InTech; London, UK: 2016. Zinc: What Is Its Role in Lung Cancer? pp. 789–800.
Mertz W. The essential trace elements. Science. 1981;213:1332–1338. doi: 10.1126/science.7022654. PubMed DOI
Plum L.M., Rink L., Haase H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health. 2010;7:1342–1365. doi: 10.3390/ijerph7041342. PubMed DOI PMC
Shilstein S.S., Cortesi M., Breskin A., Chechik R., Vartsky D., Raviv G., Kleinman N., Ramon J., Kogan G., Gladysh V. Prostatic Zn determination for prostate cancer diagnosis☆. Talanta. 2006;70:914–921. doi: 10.1016/j.talanta.2006.05.053. PubMed DOI
Margalioth E.J., Schenker J.G., Chevion M. Copper and Zinc levels in normal and malignant tissues. Cancer. 1983;52:868–872. doi: 10.1002/1097-0142(19830901)52:5<868::AID-CNCR2820520521>3.0.CO;2-K. PubMed DOI
Silva M.P., Soave D.F., Ribeiro-Silva A., Poletti M.E. Trace elements as tumor biomarkers and prognostic factors in breast cancer: A study through energy dispersive x-ray fluorescence. BMC Res. Notes. 2012;5:1–11. doi: 10.1186/1756-0500-5-194. PubMed DOI PMC
Lo S.-T., Martins A.F., Jordan V.C., Sherry A.D. Zinc as an Imaging Biomarker of Prostate Cancer. Isr. J. Chem. 2017;57:854–861. doi: 10.1002/ijch.201700043. PubMed DOI PMC
Zoriy M.V., Dehnhardt M., Matusch A., Becker J.S. Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2008;63:375–382. doi: 10.1016/j.sab.2007.11.030. DOI
Sugawara N. Influence of cadmium on zinc distribution in the mouse liver and kidney: Role of metallothionein. Toxicol. Appl. Pharmacol. 1977;42:377–386. doi: 10.1016/0041-008X(77)90015-1. PubMed DOI
Sabine Becker J. Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): State of the art and future developments. J. Mass Spectrom. 2013;48:255–268. doi: 10.1002/jms.3168. PubMed DOI
Wu B., Becker J.S. Imaging techniques for elements and element species in plant science. Metallomics. 2012;4:403. doi: 10.1039/c2mt00002d. PubMed DOI
Becker J.S., Zoriy M., Wu B., Matusch A., Becker J.S. Imaging of essential and toxic elements in biological tissues by LA-ICP-MS. J. Anal. At. Spectrom. 2008;23:1275. doi: 10.1039/b805228j. DOI
Becker J.S., Matusch A., Wu B. Bioimaging mass spectrometry of trace elements—Recent advance and applications of LA-ICP-MS: A review. Anal. Chim. Acta. 2014;835:1–18. doi: 10.1016/j.aca.2014.04.048. PubMed DOI
Konz I., Fernández B., Fernández M.L., Pereiro R., Sanz-Medel A. Laser ablation ICP-MS for quantitative biomedical applications. Anal. Bioanal. Chem. 2012;403:2113–2125. doi: 10.1007/s00216-012-6023-6. PubMed DOI
González de Vega R., Fernández-Sánchez M.L., Pisonero J., Eiró N., Vizoso F.J., Sanz-Medel A. Quantitative bioimaging of Ca, Fe, Cu and Zn in breast cancer tissues by LA-ICP-MS. J. Anal. At. Spectrom. 2017;32:671–677. doi: 10.1039/C6JA00390G. DOI
Niedzwiecki M.M., Austin C., Remark R., Merad M., Gnjatic S., Estrada-Gutierrez G., Espejel-Nuñez A., Borboa-Olivares H., Guzman-Huerta M., Wright R.J., et al. A multimodal imaging workflow to visualize metal mixtures in the human placenta and explore colocalization with biological response markers. Metallomics. 2016;8:444–452. doi: 10.1039/C6MT00010J. PubMed DOI PMC
Neumann B., Hösl S., Schwab K., Theuring F., Jakubowski N. Multiplex LA-ICP-MS bio-imaging of brain tissue of a parkinsonian mouse model stained with metal-coded affinity-tagged antibodies and coated with indium-spiked commercial inks as internal standards. J. Neurosci. Methods. 2020;334:108591. doi: 10.1016/j.jneumeth.2020.108591. PubMed DOI
Collingwood J.F., Adams F. Chemical imaging analysis of the brain with X-ray methods. Spectrochim. Acta Part B At. Spectrosc. 2017;130:101–118. doi: 10.1016/j.sab.2017.02.013. DOI
Uo M., Wada T., Sugiyama T. Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens. Jpn. Dent. Sci. Rev. 2015;51:2–9. doi: 10.1016/j.jdsr.2014.07.001. DOI
Radziemski L., Cremers D. A brief history of laser-induced breakdown spectroscopy: From the concept of atoms to LIBS 2012. Spectrochim. Acta Part B At. Spectrosc. 2013;87:3–10. doi: 10.1016/j.sab.2013.05.013. DOI
Cremers D.A., Knight A.K. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd.; Chichester, UK: 2000. Laser-Induced Breakdown Spectroscopy.
Cremers D.A., Chinni R.C. Laser-Induced Breakdown Spectroscopy—Capabilities and Limitations. Appl. Spectrosc. Rev. 2009;44:457–506. doi: 10.1080/05704920903058755. PubMed DOI
Hahn D.W., Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012;66:347–419. doi: 10.1366/11-06574. PubMed DOI
Moon Y., Han J.H., Choi J., Shin S., Kim Y.-C., Jeong S. Mapping of cutaneous melanoma by femtosecond laser-induced breakdown spectroscopy. J. Biomed. Opt. 2018;24:1. doi: 10.1117/1.JBO.24.3.031011. PubMed DOI PMC
Moncayo S., Duponchel L., Mousavipak N., Panczer G., Trichard F., Bousquet B., Pelascini F., Motto-Ros V. Exploration of megapixel hyperspectral LIBS images using principal component analysis. J. Anal. At. Spectrom. 2018;33:210–220. doi: 10.1039/C7JA00398F. DOI
Han J.H., Moon Y., Lee J.J., Choi S., Kim Y.-C., Jeong S. Differentiation of cutaneous melanoma from surrounding skin using laser-induced breakdown spectroscopy. Biomed. Opt. Express. 2016;7:57. doi: 10.1364/BOE.7.000057. PubMed DOI PMC
Kumar A., Yueh F.-Y., Singh J.P., Burgess S. Characterization of malignant tissue cells by laser-induced breakdown spectroscopy. Appl. Opt. 2004;43:5399. doi: 10.1364/AO.43.005399. PubMed DOI
Peng J., Song K., Zhu H., Kong W., Liu F., Shen T., He Y. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Sci. Rep. 2017;7:44551. doi: 10.1038/srep44551. PubMed DOI PMC
Mehari F., Rohde M., Knipfer C., Kanawade R., Klämpfl F., Adler W., Stelzle F., Schmidt M. Laser induced breakdown spectroscopy for bone and cartilage differentiation—Ex vivo study as a prospect for a laser surgery feedback mechanism. Biomed. Opt. Express. 2014;5:4013. doi: 10.1364/BOE.5.004013. PubMed DOI PMC
Kanawade R., Mahari F., Klämpfl F., Rohde M., Knipfer C., Tangermann-Gerk K., Adler W., Schmidt M., Stelzle F. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): Prospects for a feedback mechanism for surgical laser systems. J. Biophotonics. 2015;8:153–161. doi: 10.1002/jbio.201300159. PubMed DOI PMC
Samek O., Beddows D.C., Telle H., Kaiser J., Liška M., Cáceres J., Gonzáles Ureña A. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples. Spectrochim. Acta Part B At. Spectrosc. 2001;56:865–875. doi: 10.1016/S0584-8547(01)00198-7. DOI
Limbeck A., Brunnbauer L., Lohninger H., Pořízka P., Modlitbová P., Kaiser J., Janovszky P., Kéri A., Galbács G. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy. Anal. Chim. Acta. 2021;1147:72–98. doi: 10.1016/j.aca.2020.12.054. PubMed DOI
Motto-Ros V., Moncayo S., Fabre C., Busser B. Laser-Induced Breakdown Spectroscopy. Elsevier; Amsterdam, The Netherlands: 2020. LIBS imaging applications; pp. 329–346.
Sancey L., Kotb S., Truillet C., Appaix F., Marais A., Thomas E., Van Der Sanden B., Klein J.P., Laurent B., Cottier M., et al. Long-term in Vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano. 2015;9:2477–2488. doi: 10.1021/acsnano.5b00552. PubMed DOI
Le Guével X., Henry M., Motto-Ros V., Longo E., Montañez M.I., Pelascini F., de La Rochefoucauld O., Zeitoun P., Coll J.-L., Josserand V., et al. Elemental and optical imaging evaluation of zwitterionic gold nanoclusters in glioblastoma mouse models. Nanoscale. 2018;10:18657–18664. doi: 10.1039/C8NR05299A. PubMed DOI
Kalot G., Godard A., Busser B., Pliquett J., Broekgaarden M., Motto-Ros V., Wegner K.D., Resch-Genger U., Köster U., Denat F., et al. Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications. Cells. 2020;9:1953. doi: 10.3390/cells9091953. PubMed DOI PMC
Kaiser J., Novotný K., Martin M.Z., Hrdlička A., Malina R., Hartl M., Adam V., Kizek R. Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications. Surf. Sci. Rep. 2012;67:233–243. doi: 10.1016/j.surfrep.2012.09.001. DOI
Gimenez Y., Busser B., Trichard F., Kulesza A., Laurent J.M., Zaun V., Lux F., Benoit J.M., Panczer G., Dugourd P., et al. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy. Sci. Rep. 2016;6:29936. doi: 10.1038/srep29936. PubMed DOI PMC
Motto-Ros V., Sancey L., Ma Q.L., Lux F., Bai X.S., Wang X.C., Yu J., Panczer G., Tillement O. Mapping of native inorganic elements and injected nanoparticles in a biological organ with laser-induced plasma. Appl. Phys. Lett. 2012;101:223702. doi: 10.1063/1.4768777. DOI
Motto-Ros V., Sancey L., Wang X.C., Ma Q.L., Lux F., Bai X.S., Panczer G., Tillement O., Yu J. Mapping nanoparticles injected into a biological tissue using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2013;87:168–174. doi: 10.1016/j.sab.2013.05.020. DOI
Sancey L., Motto-Ros V., Kotb S., Wang X., Lux F., Panczer G., Yu J., Tillement O. Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue. J. Vis. Exp. 2014;88:1–8. doi: 10.3791/51353. PubMed DOI PMC
Sancey L., Motto-Ros V., Busser B., Kotb S., Benoit J.M., Piednoir A., Lux F., Tillement O., Panczer G., Yu J. Laser spectrometry for multi-elemental imaging of biological tissues. Sci. Rep. 2015;4:6065. doi: 10.1038/srep06065. PubMed DOI PMC
Moncayo S., Trichard F., Busser B., Sabatier-Vincent M., Pelascini F., Pinel N., Templier I., Charles J., Sancey L., Motto-Ros V. Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2017;133:40–44. doi: 10.1016/j.sab.2017.04.013. DOI
Markushin Y., Melikechi N. Ovarian Cancer—Basic Science Perspective. InTech; London, UK: 2012. Sensitive Detection of Epithelial Ovarian Cancer Biomarkers Using Tag-Laser Induced Breakdown Spectroscopy.
Bonta M., Gonzalez J.J., Quarles C.D., Russo R.E., Hegedus B., Limbeck A. Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS. J. Anal. At. Spectrom. 2016;31:252–258. doi: 10.1039/C5JA00287G. DOI
Jolivet L., Leprince M., Moncayo S., Sorbier L., Lienemann C.-P., Motto-Ros V. Review of the recent advances and applications of LIBS-based imaging. Spectrochim. Acta Part B At. Spectrosc. 2019;151:41–53. doi: 10.1016/j.sab.2018.11.008. DOI
Busser B., Moncayo S., Coll J.-L., Sancey L., Motto-Ros V. Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications. Coord. Chem. Rev. 2018;358:70–79. doi: 10.1016/j.ccr.2017.12.006. DOI
Modlitbová P., Pořízka P., Kaiser J. Laser-induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues. TrAC Trends Anal. Chem. 2020;122:115729. doi: 10.1016/j.trac.2019.115729. DOI
Jantzi S.C., Motto-Ros V., Trichard F., Markushin Y., Melikechi N., De Giacomo A. Sample treatment and preparation for laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016;115:52–63. doi: 10.1016/j.sab.2015.11.002. DOI
Multari R.A., Cremers D.A., Bostian M.L. Use of laser-induced breakdown spectroscopy for the differentiation of pathogens and viruses on substrates. Appl. Opt. 2012;51:B57. doi: 10.1364/AO.51.000B57. PubMed DOI
Gottfried J.L. Discrimination of biological and chemical threat simulants in residue mixtures on multiple substrates. Anal. Bioanal. Chem. 2011;400:3289–3301. doi: 10.1007/s00216-011-4746-4. PubMed DOI
Gnanapragasam V.J. Unlocking the molecular archive: The emerging use of formalin-fixed paraffin-embedded tissue for biomarker research in urological cancer. BJU Int. 2010;105:274–278. doi: 10.1111/j.1464-410X.2009.08665.x. PubMed DOI
Berg D., Malinowsky K., Reischauer B., Wolff C., Becker K.-F. Use of Formalin-Fixed and Paraffin-Embedded Tissues for Diagnosis and Therapy in Routine Clinical Settings. In: Korf U., editor. Imaging. Volume 785. Humana Press; Totowa, NJ, USA: 2011. pp. 109–122. Methods in Molecular Biology. PubMed
Kramida A., Ralchenko Y., Reader J., N.A.T. NIST Atomic Spectra Database. National Institute of Standards and Technology; Gaithersburg, MD, USA: 2018.
Yaroshchyk P., Eberhardt J.E. Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm. Spectrochim. Acta Part B At. Spectrosc. 2014;99:138–149. doi: 10.1016/j.sab.2014.06.020. DOI
Huang L., Yao M., Xu Y., Liu M. Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models. Appl. Phys. B Lasers Opt. 2013;111:45–51. doi: 10.1007/s00340-012-5305-1. DOI