Methodology for the Implementation of Internal Standard to Laser-Induced Breakdown Spectroscopy Analysis of Soft Tissues

. 2021 Jan 29 ; 21 (3) : . [epub] 20210129

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33572796

Grantová podpora
20-19526Y Grantová Agentura České Republiky
1193819 GAUK
82p5 Action
FSI-S-20-6353 FSI CEP - Centrální evidence projektů
LQ1601 Ministry of Education, Youth and Sports of the Czech Republic - CEITEC 2020

The improving performance of the laser-induced breakdown spectroscopy (LIBS) triggered its utilization in the challenging topic of soft tissue analysis. Alterations of elemental content within soft tissues are commonly assessed and provide further insights in biological research. However, the laser ablation of soft tissues is a complex issue and demands a priori optimization, which is not straightforward in respect to a typical LIBS experiment. Here, we focus on implementing an internal standard into the LIBS elemental analysis of soft tissue samples. We achieve this by extending routine methodology for optimization of soft tissues analysis with a standard spiking method. This step enables a robust optimization procedure of LIBS experimental settings. Considering the implementation of LIBS analysis to the histological routine, we avoid further alterations of the tissue structure. Therefore, we propose a unique methodology of sample preparation, analysis, and subsequent data treatment, which enables the comparison of signal response from heterogenous matrix for different LIBS parameters. Additionally, a brief step-by-step process of optimization to achieve the highest signal-to-noise ratio (SNR) is described. The quality of laser-tissue interaction is investigated on the basis of the zinc signal response, while selected experimental parameters (e.g., defocus, gate delay, laser energy, and ambient atmosphere) are systematically modified.

Zobrazit více v PubMed

Fraga C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005;26:235–244. doi: 10.1016/j.mam.2005.07.013. PubMed DOI

Rattanachaiwong S., Singer P. Diets and Diet. Therapy: Trace Elements. Elsevier; Amsterdam, The Netherlands: 2019.

Gomez N.N., Biaggio V.S., Ciminari M.E., Chaca M.V.P., Álvarez S.M. Nutritional Deficiency. InTech; London, UK: 2016. Zinc: What Is Its Role in Lung Cancer? pp. 789–800.

Mertz W. The essential trace elements. Science. 1981;213:1332–1338. doi: 10.1126/science.7022654. PubMed DOI

Plum L.M., Rink L., Haase H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health. 2010;7:1342–1365. doi: 10.3390/ijerph7041342. PubMed DOI PMC

Shilstein S.S., Cortesi M., Breskin A., Chechik R., Vartsky D., Raviv G., Kleinman N., Ramon J., Kogan G., Gladysh V. Prostatic Zn determination for prostate cancer diagnosis☆. Talanta. 2006;70:914–921. doi: 10.1016/j.talanta.2006.05.053. PubMed DOI

Margalioth E.J., Schenker J.G., Chevion M. Copper and Zinc levels in normal and malignant tissues. Cancer. 1983;52:868–872. doi: 10.1002/1097-0142(19830901)52:5<868::AID-CNCR2820520521>3.0.CO;2-K. PubMed DOI

Silva M.P., Soave D.F., Ribeiro-Silva A., Poletti M.E. Trace elements as tumor biomarkers and prognostic factors in breast cancer: A study through energy dispersive x-ray fluorescence. BMC Res. Notes. 2012;5:1–11. doi: 10.1186/1756-0500-5-194. PubMed DOI PMC

Lo S.-T., Martins A.F., Jordan V.C., Sherry A.D. Zinc as an Imaging Biomarker of Prostate Cancer. Isr. J. Chem. 2017;57:854–861. doi: 10.1002/ijch.201700043. PubMed DOI PMC

Zoriy M.V., Dehnhardt M., Matusch A., Becker J.S. Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2008;63:375–382. doi: 10.1016/j.sab.2007.11.030. DOI

Sugawara N. Influence of cadmium on zinc distribution in the mouse liver and kidney: Role of metallothionein. Toxicol. Appl. Pharmacol. 1977;42:377–386. doi: 10.1016/0041-008X(77)90015-1. PubMed DOI

Sabine Becker J. Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): State of the art and future developments. J. Mass Spectrom. 2013;48:255–268. doi: 10.1002/jms.3168. PubMed DOI

Wu B., Becker J.S. Imaging techniques for elements and element species in plant science. Metallomics. 2012;4:403. doi: 10.1039/c2mt00002d. PubMed DOI

Becker J.S., Zoriy M., Wu B., Matusch A., Becker J.S. Imaging of essential and toxic elements in biological tissues by LA-ICP-MS. J. Anal. At. Spectrom. 2008;23:1275. doi: 10.1039/b805228j. DOI

Becker J.S., Matusch A., Wu B. Bioimaging mass spectrometry of trace elements—Recent advance and applications of LA-ICP-MS: A review. Anal. Chim. Acta. 2014;835:1–18. doi: 10.1016/j.aca.2014.04.048. PubMed DOI

Konz I., Fernández B., Fernández M.L., Pereiro R., Sanz-Medel A. Laser ablation ICP-MS for quantitative biomedical applications. Anal. Bioanal. Chem. 2012;403:2113–2125. doi: 10.1007/s00216-012-6023-6. PubMed DOI

González de Vega R., Fernández-Sánchez M.L., Pisonero J., Eiró N., Vizoso F.J., Sanz-Medel A. Quantitative bioimaging of Ca, Fe, Cu and Zn in breast cancer tissues by LA-ICP-MS. J. Anal. At. Spectrom. 2017;32:671–677. doi: 10.1039/C6JA00390G. DOI

Niedzwiecki M.M., Austin C., Remark R., Merad M., Gnjatic S., Estrada-Gutierrez G., Espejel-Nuñez A., Borboa-Olivares H., Guzman-Huerta M., Wright R.J., et al. A multimodal imaging workflow to visualize metal mixtures in the human placenta and explore colocalization with biological response markers. Metallomics. 2016;8:444–452. doi: 10.1039/C6MT00010J. PubMed DOI PMC

Neumann B., Hösl S., Schwab K., Theuring F., Jakubowski N. Multiplex LA-ICP-MS bio-imaging of brain tissue of a parkinsonian mouse model stained with metal-coded affinity-tagged antibodies and coated with indium-spiked commercial inks as internal standards. J. Neurosci. Methods. 2020;334:108591. doi: 10.1016/j.jneumeth.2020.108591. PubMed DOI

Collingwood J.F., Adams F. Chemical imaging analysis of the brain with X-ray methods. Spectrochim. Acta Part B At. Spectrosc. 2017;130:101–118. doi: 10.1016/j.sab.2017.02.013. DOI

Uo M., Wada T., Sugiyama T. Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens. Jpn. Dent. Sci. Rev. 2015;51:2–9. doi: 10.1016/j.jdsr.2014.07.001. DOI

Radziemski L., Cremers D. A brief history of laser-induced breakdown spectroscopy: From the concept of atoms to LIBS 2012. Spectrochim. Acta Part B At. Spectrosc. 2013;87:3–10. doi: 10.1016/j.sab.2013.05.013. DOI

Cremers D.A., Knight A.K. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd.; Chichester, UK: 2000. Laser-Induced Breakdown Spectroscopy.

Cremers D.A., Chinni R.C. Laser-Induced Breakdown Spectroscopy—Capabilities and Limitations. Appl. Spectrosc. Rev. 2009;44:457–506. doi: 10.1080/05704920903058755. PubMed DOI

Hahn D.W., Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012;66:347–419. doi: 10.1366/11-06574. PubMed DOI

Moon Y., Han J.H., Choi J., Shin S., Kim Y.-C., Jeong S. Mapping of cutaneous melanoma by femtosecond laser-induced breakdown spectroscopy. J. Biomed. Opt. 2018;24:1. doi: 10.1117/1.JBO.24.3.031011. PubMed DOI PMC

Moncayo S., Duponchel L., Mousavipak N., Panczer G., Trichard F., Bousquet B., Pelascini F., Motto-Ros V. Exploration of megapixel hyperspectral LIBS images using principal component analysis. J. Anal. At. Spectrom. 2018;33:210–220. doi: 10.1039/C7JA00398F. DOI

Han J.H., Moon Y., Lee J.J., Choi S., Kim Y.-C., Jeong S. Differentiation of cutaneous melanoma from surrounding skin using laser-induced breakdown spectroscopy. Biomed. Opt. Express. 2016;7:57. doi: 10.1364/BOE.7.000057. PubMed DOI PMC

Kumar A., Yueh F.-Y., Singh J.P., Burgess S. Characterization of malignant tissue cells by laser-induced breakdown spectroscopy. Appl. Opt. 2004;43:5399. doi: 10.1364/AO.43.005399. PubMed DOI

Peng J., Song K., Zhu H., Kong W., Liu F., Shen T., He Y. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Sci. Rep. 2017;7:44551. doi: 10.1038/srep44551. PubMed DOI PMC

Mehari F., Rohde M., Knipfer C., Kanawade R., Klämpfl F., Adler W., Stelzle F., Schmidt M. Laser induced breakdown spectroscopy for bone and cartilage differentiation—Ex vivo study as a prospect for a laser surgery feedback mechanism. Biomed. Opt. Express. 2014;5:4013. doi: 10.1364/BOE.5.004013. PubMed DOI PMC

Kanawade R., Mahari F., Klämpfl F., Rohde M., Knipfer C., Tangermann-Gerk K., Adler W., Schmidt M., Stelzle F. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): Prospects for a feedback mechanism for surgical laser systems. J. Biophotonics. 2015;8:153–161. doi: 10.1002/jbio.201300159. PubMed DOI PMC

Samek O., Beddows D.C., Telle H., Kaiser J., Liška M., Cáceres J., Gonzáles Ureña A. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples. Spectrochim. Acta Part B At. Spectrosc. 2001;56:865–875. doi: 10.1016/S0584-8547(01)00198-7. DOI

Limbeck A., Brunnbauer L., Lohninger H., Pořízka P., Modlitbová P., Kaiser J., Janovszky P., Kéri A., Galbács G. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy. Anal. Chim. Acta. 2021;1147:72–98. doi: 10.1016/j.aca.2020.12.054. PubMed DOI

Motto-Ros V., Moncayo S., Fabre C., Busser B. Laser-Induced Breakdown Spectroscopy. Elsevier; Amsterdam, The Netherlands: 2020. LIBS imaging applications; pp. 329–346.

Sancey L., Kotb S., Truillet C., Appaix F., Marais A., Thomas E., Van Der Sanden B., Klein J.P., Laurent B., Cottier M., et al. Long-term in Vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano. 2015;9:2477–2488. doi: 10.1021/acsnano.5b00552. PubMed DOI

Le Guével X., Henry M., Motto-Ros V., Longo E., Montañez M.I., Pelascini F., de La Rochefoucauld O., Zeitoun P., Coll J.-L., Josserand V., et al. Elemental and optical imaging evaluation of zwitterionic gold nanoclusters in glioblastoma mouse models. Nanoscale. 2018;10:18657–18664. doi: 10.1039/C8NR05299A. PubMed DOI

Kalot G., Godard A., Busser B., Pliquett J., Broekgaarden M., Motto-Ros V., Wegner K.D., Resch-Genger U., Köster U., Denat F., et al. Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications. Cells. 2020;9:1953. doi: 10.3390/cells9091953. PubMed DOI PMC

Kaiser J., Novotný K., Martin M.Z., Hrdlička A., Malina R., Hartl M., Adam V., Kizek R. Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications. Surf. Sci. Rep. 2012;67:233–243. doi: 10.1016/j.surfrep.2012.09.001. DOI

Gimenez Y., Busser B., Trichard F., Kulesza A., Laurent J.M., Zaun V., Lux F., Benoit J.M., Panczer G., Dugourd P., et al. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy. Sci. Rep. 2016;6:29936. doi: 10.1038/srep29936. PubMed DOI PMC

Motto-Ros V., Sancey L., Ma Q.L., Lux F., Bai X.S., Wang X.C., Yu J., Panczer G., Tillement O. Mapping of native inorganic elements and injected nanoparticles in a biological organ with laser-induced plasma. Appl. Phys. Lett. 2012;101:223702. doi: 10.1063/1.4768777. DOI

Motto-Ros V., Sancey L., Wang X.C., Ma Q.L., Lux F., Bai X.S., Panczer G., Tillement O., Yu J. Mapping nanoparticles injected into a biological tissue using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2013;87:168–174. doi: 10.1016/j.sab.2013.05.020. DOI

Sancey L., Motto-Ros V., Kotb S., Wang X., Lux F., Panczer G., Yu J., Tillement O. Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle’s Mapping and Quantification in Organ Tissue. J. Vis. Exp. 2014;88:1–8. doi: 10.3791/51353. PubMed DOI PMC

Sancey L., Motto-Ros V., Busser B., Kotb S., Benoit J.M., Piednoir A., Lux F., Tillement O., Panczer G., Yu J. Laser spectrometry for multi-elemental imaging of biological tissues. Sci. Rep. 2015;4:6065. doi: 10.1038/srep06065. PubMed DOI PMC

Moncayo S., Trichard F., Busser B., Sabatier-Vincent M., Pelascini F., Pinel N., Templier I., Charles J., Sancey L., Motto-Ros V. Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2017;133:40–44. doi: 10.1016/j.sab.2017.04.013. DOI

Markushin Y., Melikechi N. Ovarian Cancer—Basic Science Perspective. InTech; London, UK: 2012. Sensitive Detection of Epithelial Ovarian Cancer Biomarkers Using Tag-Laser Induced Breakdown Spectroscopy.

Bonta M., Gonzalez J.J., Quarles C.D., Russo R.E., Hegedus B., Limbeck A. Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS. J. Anal. At. Spectrom. 2016;31:252–258. doi: 10.1039/C5JA00287G. DOI

Jolivet L., Leprince M., Moncayo S., Sorbier L., Lienemann C.-P., Motto-Ros V. Review of the recent advances and applications of LIBS-based imaging. Spectrochim. Acta Part B At. Spectrosc. 2019;151:41–53. doi: 10.1016/j.sab.2018.11.008. DOI

Busser B., Moncayo S., Coll J.-L., Sancey L., Motto-Ros V. Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications. Coord. Chem. Rev. 2018;358:70–79. doi: 10.1016/j.ccr.2017.12.006. DOI

Modlitbová P., Pořízka P., Kaiser J. Laser-induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues. TrAC Trends Anal. Chem. 2020;122:115729. doi: 10.1016/j.trac.2019.115729. DOI

Jantzi S.C., Motto-Ros V., Trichard F., Markushin Y., Melikechi N., De Giacomo A. Sample treatment and preparation for laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016;115:52–63. doi: 10.1016/j.sab.2015.11.002. DOI

Multari R.A., Cremers D.A., Bostian M.L. Use of laser-induced breakdown spectroscopy for the differentiation of pathogens and viruses on substrates. Appl. Opt. 2012;51:B57. doi: 10.1364/AO.51.000B57. PubMed DOI

Gottfried J.L. Discrimination of biological and chemical threat simulants in residue mixtures on multiple substrates. Anal. Bioanal. Chem. 2011;400:3289–3301. doi: 10.1007/s00216-011-4746-4. PubMed DOI

Gnanapragasam V.J. Unlocking the molecular archive: The emerging use of formalin-fixed paraffin-embedded tissue for biomarker research in urological cancer. BJU Int. 2010;105:274–278. doi: 10.1111/j.1464-410X.2009.08665.x. PubMed DOI

Berg D., Malinowsky K., Reischauer B., Wolff C., Becker K.-F. Use of Formalin-Fixed and Paraffin-Embedded Tissues for Diagnosis and Therapy in Routine Clinical Settings. In: Korf U., editor. Imaging. Volume 785. Humana Press; Totowa, NJ, USA: 2011. pp. 109–122. Methods in Molecular Biology. PubMed

Kramida A., Ralchenko Y., Reader J., N.A.T. NIST Atomic Spectra Database. National Institute of Standards and Technology; Gaithersburg, MD, USA: 2018.

Yaroshchyk P., Eberhardt J.E. Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm. Spectrochim. Acta Part B At. Spectrosc. 2014;99:138–149. doi: 10.1016/j.sab.2014.06.020. DOI

Huang L., Yao M., Xu Y., Liu M. Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models. Appl. Phys. B Lasers Opt. 2013;111:45–51. doi: 10.1007/s00340-012-5305-1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...