CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells

. 2021 ; 12 () : 619442. [epub] 20210204

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33613309

A deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in CF leads to chronic lung disease. CF is associated with abnormalities in fatty acids, ceramides, and cholesterol, their relationship with CF lung pathology is not completely understood. Therefore, we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well-differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell-autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and of long- to very long-chain ceramide species (LCC/VLCC), reduced levels of total ceramides and ceramide precursors. In addition to the retinoic acid analog fenretinide, the anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and oxidative stress, confirming the CFTR dependence of lipid ratios. However, despite functional correction of CF cells up to 60% of non-CF in Ussing chamber experiments, a 72-h triple compound treatment (elexacaftor/tezacaftor/ivacaftor surrogate) did not completely normalize lipid imbalance or oxidative stress. Protein array analysis revealed differential expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions, including enhanced secretion of the neutrophil activator CXCL5, and the T-cell activator CCL17. However, treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, ivacaftor/lumacaftor and ivacaftor/tezacaftor/elexacaftor, did not effectively suppress the inflammatory phenotype. We propose that CFTR deficiency causes oxidative stress in CF airway epithelium, affecting multiple bioactive lipid metabolic pathways, which likely play a role in CF lung disease progression. A combination of anti-oxidant, anti-inflammatory and CFTR targeted therapeutics may be required for full correction of the CF phenotype.

Zobrazit více v PubMed

Adams C., Icheva V., Deppisch C., Lauer J., Herrmann G., Graepler-Mainka U., et al. . (2016). Long-Term pulmonal therapy of cystic fibrosis-patients with amitriptyline. Cell. Physiol. Biochem. 39, 565–572. 10.1159/000445648, PMID: PubMed DOI

Alashkar Alhamwe B., Alhamdan F., Ruhl A., Potaczek D. P., Renz H. (2020). The role of epigenetics in allergy and asthma development. Curr. Opin. Allergy Clin. Immunol. 20, 48–55. 10.1097/ACI.0000000000000598, PMID: PubMed DOI

Ali M., Saroha A., Pewzner-Jung Y., Futerman A. H. (2015). LPS-mediated septic shock is augmented in ceramide synthase 2 null mice due to elevated activity of TNFalpha-converting enzyme. FEBS Lett. 589, 2213–2217. 10.1016/j.febslet.2015.06.045, PMID: PubMed DOI

Amatngalim G. D., Schrumpf J. A., Dishchekenian F., Mertens T. C. J., Ninaber D. K., van der Linden A. C., et al. . (2018). Aberrant epithelial differentiation by cigarette smoke dysregulates respiratory host defence. Eur. Respir. J. 51:1701009. 10.1183/13993003.01009-2017, PMID: PubMed DOI

Anding A. L., Jones J. D., Newton M. A., Curley R. W., Jr., Clagett-Dame M. (2018). 4-HPR is an endoplasmic reticulum stress aggravator and sensitizes breast cancer cells resistant to TRAIL/Apo2L. Anticancer Res. 38, 4403–4416. 10.21873/anticanres.12742, PMID: PubMed DOI

Bear C. E. (2020). A therapy for most with cystic fibrosis. Cell 180:211. 10.1016/j.cell.2019.12.032, PMID: PubMed DOI

Brasier A. R., Boldogh I. (2019). Targeting inducible epigenetic reprogramming pathways in chronic airway remodeling. Drugs Context 8:2019-8-3. 10.7573/dic.2019-8-3, PMID: PubMed DOI PMC

Burns D. P., Drummond S. E., Bolger D., Coiscaud A., Murphy K. H., Edge D., et al. . (2019). N-acetylcysteine decreases fibrosis and increases force-generating capacity of mdx diaphragm. Antioxidants 8:581. 10.3390/antiox8120581, PMID: PubMed DOI PMC

Cantin A. M., North S. L., Hubbard R. C., Crystal R. G. (1987). Normal alveolar epithelial lining fluid contains high levels of glutathione. J. Appl. Physiol. 63, 152–157. 10.1152/jappl.1987.63.1.152, PMID: PubMed DOI

Chandler J. D., Margaroli C., Horati H., Kilgore M. B., Veltman M., Liu H. K., et al. . (2018). Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. Eur. Respir. J. 52:1801118. 10.1183/13993003.01118-2018, PMID: PubMed DOI PMC

Chen J., Dai L., Wang T., He J., Wang Y., Wen F. (2019). The elevated CXCL5 levels in circulation are associated with lung function decline in COPD patients and cigarette smoking-induced mouse model of COPD. Ann. Med. 51, 314–329. 10.1080/07853890.2019.1639809, PMID: PubMed DOI PMC

Cholon D. M., Quinney N. L., Fulcher M. L., Esther C. R., Jr., Das J., Dokholyan N. V., et al. . (2014). Potentiator ivacaftor abrogates pharmacological correction of DeltaF508 CFTR in cystic fibrosis. Sci. Transl. Med. 6:246ra296. 10.1126/scitranslmed.3008680, PMID: PubMed DOI PMC

Ciofu O., Smith S., Lykkesfeldt J. (2020). A systematic Cochrane review of antioxidant supplementation lung disease for cystic fibrosis. Paediatr. Respir. Rev. 33, 28–29. 10.1016/j.prrv.2019.12.001, PMID: PubMed DOI

Csanady L., Torocsik B. (2019). Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations. elife 8:e46450. 10.7554/eLife.46450, PMID: PubMed DOI PMC

de Bari L., Favia M., Bobba A., Lassandro R., Guerra L., Atlante A. (2018). Aberrant GSH reductase and NOX activities concur with defective CFTR to pro-oxidative imbalance in cystic fibrosis airways. J. Bioenerg. Biomembr. 50, 117–129. 10.1007/s10863-018-9748-x, PMID: PubMed DOI

Devlin C. M., Lahm T., Hubbard W. C., Van Demark M., Wang K. C., Wu X., et al. . (2011). Dihydroceramide-based response to hypoxia. J. Biol. Chem. 286, 38069–38078. 10.1074/jbc.M111.297994, PMID: PubMed DOI PMC

Dickerhof N., Pearson J. F., Hoskin T. S., Berry L. J., Turner R., Sly P. D., et al. . (2017). Oxidative stress in early cystic fibrosis lung disease is exacerbated by airway glutathione deficiency. Free Radic. Biol. Med. 113, 236–243. 10.1016/j.freeradbiomed.2017.09.028, PMID: PubMed DOI

Ebenezer D. L., Berdyshev E. V., Bronova I. A., Liu Y., Tiruppathi C., Komarova Y., et al. . (2019). Pseudomonas aeruginosa stimulates nuclear sphingosine-1-phosphate generation and epigenetic regulation of lung inflammatory injury. Thorax 74, 579–591. 10.1136/thoraxjnl-2018-212378, PMID: PubMed DOI PMC

Esposito S., Tosco A., Villella V. R., Raia V., Kroemer G., Maiuri L. (2016). Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis. Mol. Cell. Pediatr. 3:13. 10.1186/s40348-016-0040-z, PMID: PubMed DOI PMC

Freedman S. D., Katz M. H., Parker E. M., Laposata M., Urman M. Y., Alvarez J. G. (1999). A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr(−/−) mice. Proc. Natl. Acad. Sci. U. S. A. 96, 13995–14000. 10.1073/pnas.96.24.13995, PMID: PubMed DOI PMC

Fussbroich D., Colas R. A., Eickmeier O., Trischler J., Jerkic S. P., Zimmermann K., et al. . (2020). A combination of LCPUFA ameliorates airway inflammation in asthmatic mice by promoting pro-resolving effects and reducing adverse effects of EPA. Mucosal Immunol. 13, 481–492. 10.1038/s41385-019-0245-2, PMID: PubMed DOI PMC

Fussbroich D., Zimmermann K., Gopel A., Eickmeier O., Trischler J., Zielen S., et al. . (2019). A specific combined long-chain polyunsaturated fatty acid supplementation reverses fatty acid profile alterations in a mouse model of chronic asthma. Lipids Health Dis. 18:16. 10.1186/s12944-018-0947-6, PMID: PubMed DOI PMC

Garic D., De Sanctis J. B., Dumut D. C., Shah J., Pena M. J., Youssef M., et al. . (2020). Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865:158538. 10.1016/j.bbalip.2019.158538, PMID: PubMed DOI

Garic D., De Sanctis J. B., Wojewodka G., Houle D., Cupri S., Abu-Arish A., et al. . (2017). Fenretinide differentially modulates the levels of long- and very long-chain ceramides by downregulating Cers5 enzyme: evidence from bench to bedside. J. Mol. Med. 95, 1053–1064. 10.1007/s00109-017-1564-y, PMID: PubMed DOI

Ghio A. J., Roggli V. L., Soukup J. M., Richards J. H., Randell S. H., Muhlebach M. S. (2013). Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients. J. Cyst. Fibros. 12, 390–398. 10.1016/j.jcf.2012.10.010, PMID: PubMed DOI

Grassme H., Carpinteiro A., Edwards M. J., Gulbins E., Becker K. A. (2014). Regulation of the inflammasome by ceramide in cystic fibrosis lungs. Cell. Physiol. Biochem. 34, 45–55. 10.1159/000362983, PMID: PubMed DOI

Guilbault C., De Sanctis J. B., Wojewodka G., Saeed Z., Lachance C., Skinner T. A., et al. . (2008). Fenretinide corrects newly found ceramide deficiency in cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 38, 47–56. 10.1165/rcmb.2007-0036OC, PMID: PubMed DOI

Guilbault C., Wojewodka G., Saeed Z., Hajduch M., Matouk E., De Sanctis J. B., et al. . (2009). Cystic fibrosis fatty acid imbalance is linked to ceramide deficiency and corrected by fenretinide. Am. J. Respir. Cell Mol. Biol. 41, 100–106. 10.1165/rcmb.2008-0279OC, PMID: PubMed DOI

Hayes D., Jr., Harhay M. O., Nicol K. K., Liyanage N. P. M., Keller B. C., Robinson R. T. (2020). Lung T-cell profile alterations are associated with bronchiolitis obliterans syndrome in cystic fibrosis lung transplant recipients. Lung 198, 157–161. 10.1007/s00408-019-00298-1, PMID: PubMed DOI

Hisert K. B., Birkland T. P., Schoenfelt K. Q., Long M. E., Grogan B., Carter S., et al. . (2020). CFTR modulator therapy enhances peripheral blood monocyte contributions to immune responses in people with cystic fibrosis. Front. Pharmacol. 11:1219. 10.3389/fphar.2020.01219, PMID: PubMed DOI PMC

Holden P., Nair L. S. (2019). Deferoxamine: an angiogenic and antioxidant molecule for tissue regeneration. Tissue Eng. Part B Rev. 25, 461–470. 10.1089/ten.TEB.2019.0111, PMID: PubMed DOI

Horati H., Janssens H. M., Margaroli C., Veltman M., Stolarczyk M., Kilgore M. B., et al. . (2020). Airway profile of bioactive lipids predicts early progression of lung disease in cystic fibrosis. J. Cyst. Fibros. 19, 902–909. 10.1016/j.jcf.2020.01.010, PMID: PubMed DOI PMC

Huaux F., Noel S., Dhooghe B., Panin N., Lo Re S., Lison D., et al. . (2013). Dysregulated proinflammatory and fibrogenic phenotype of fibroblasts in cystic fibrosis. PLoS One 8:e64341. 10.1371/journal.pone.0064341, PMID: PubMed DOI PMC

Jarosz-Griffiths H. H., Scambler T., Wong C. H., Lara-Reyna S., Holbrook J., Martinon F., et al. . (2020). Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis. elife 9:e54556. 10.7554/eLife.54556, PMID: PubMed DOI PMC

Kanagaratham C., Kalivodova A., Najdekr L., Friedecky D., Adam T., Hajduch M., et al. . (2014). Fenretinide prevents inflammation and airway hyperresponsiveness in a mouse model of allergic asthma. Am. J. Respir. Cell Mol. Biol. 51, 783–792. 10.1165/rcmb.2014-0121OC, PMID: PubMed DOI

Keating D., Marigowda G., Burr L., Daines C., Mall M. A., McKone E. F., et al. . (2018). VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N. Engl. J. Med. 379, 1612–1620. 10.1056/NEJMoa1807120, PMID: PubMed DOI PMC

Kleme M. L., Sane A., Garofalo C., Seidman E., Brochiero E., Berthiaume Y., et al. . (2018). CFTR deletion confers mitochondrial dysfunction and disrupts lipid homeostasis in intestinal epithelial cells. Nutrients 10:836. 10.3390/nu10070836, PMID: PubMed DOI PMC

Klymiuk N., Mundhenk L., Kraehe K., Wuensch A., Plog S., Emrich D., et al. . (2012). Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J. Mol. Med. 90, 597–608. 10.1007/s00109-011-0839-y, PMID: PubMed DOI

Kogan I., Ramjeesingh M., Li C., Kidd J. F., Wang Y., Leslie E. M., et al. . (2003). CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J. 22, 1981–1989. 10.1093/emboj/cdg194, PMID: PubMed DOI PMC

Li C., Guo S., Pang W., Zhao Z. (2019). Crosstalk between acid sphingomyelinase and inflammasome signaling and their emerging roles in tissue injury and fibrosis. Front. Cell Dev. Biol. 7:378. 10.3389/fcell.2019.00378, PMID: PubMed DOI PMC

Liessi N., Pesce E., Braccia C., Bertozzi S. M., Giraudo A., Bandiera T., et al. . (2020). Distinctive lipid signatures of bronchial epithelial cells associated with cystic fibrosis drugs, including Trikafta. JCI Insight 5:e138722. 10.1172/jci.insight.138722, PMID: PubMed DOI PMC

Linsdell P., Hanrahan J. W. (1998). Glutathione permeability of CFTR. Am. J. Phys. 275, C323–C326. 10.1152/ajpcell.1998.275.1.C323, PMID: PubMed DOI

Loberto N., Mancini G., Bassi R., Carsana E. V., Tamanini A., Pedemonte N., et al. . (2020). Sphingolipids and plasma membrane hydrolases in human primary bronchial cells during differentiation and their altered patterns in cystic fibrosis. Glycoconj. J. 37, 623–633. 10.1007/s10719-020-09935-x, PMID: PubMed DOI PMC

Margaroli C., Garratt L. W., Horati H., Dittrich A. S., Rosenow T., Montgomery S. T., et al. . (2019). Elastase exocytosis by airway neutrophils is associated with early lung damage in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 199, 873–881. 10.1164/rccm.201803-0442OC, PMID: PubMed DOI PMC

Matthes E., Goepp J., Carlile G. W., Luo Y., Dejgaard K., Billet A., et al. . (2016). Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor). Br. J. Pharmacol. 173, 459–470. 10.1111/bph.13365, PMID: PubMed DOI PMC

Matthes E., Goepp J., Martini C., Shan J., Liao J., Thomas D. Y., et al. . (2018). Variable responses to CFTR correctors in vitro: estimating the design effect in precision medicine. Front. Pharmacol. 9:1490. 10.3389/fphar.2018.01490, PMID: PubMed DOI PMC

McIlroy G. D., Tammireddy S. R., Maskrey B. H., Grant L., Doherty M. K., Watson D. G., et al. . (2016). Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem. Pharmacol. 100, 86–97. 10.1016/j.bcp.2015.11.017, PMID: PubMed DOI PMC

Merkert S., Schubert M., Olmer R., Engels L., Radetzki S., Veltman M., et al. . (2019). High-throughput screening for modulators of CFTR activity based on genetically engineered cystic fibrosis disease-specific iPSCs. Stem Cell Reports 12, 1389–1403. 10.1016/j.stemcr.2019.04.014, PMID: PubMed DOI PMC

Morin C., Cantin A. M., Vezina F. A., Fortin S. (2018). The efficacy of MAG-DHA for correcting AA/DHA imbalance of cystic fibrosis patients. Mar. Drugs 16:184. 10.3390/md16060184, PMID: PubMed DOI PMC

Murphy S. V., Ribeiro C. M. P. (2019). Cystic fibrosis inflammation: hyperinflammatory, hypoinflammatory, or both? Am. J. Respir. Cell Mol. Biol. 61, 273–274. 10.1165/rcmb.2019-0107ED, PMID: PubMed DOI PMC

Orienti I., Gentilomi G. A., Farruggia G. (2020). Pulmonary delivery of fenretinide: a possible adjuvant treatment in COVID-19. Int. J. Mol. Sci. 21:3812. 10.3390/ijms21113812, PMID: PubMed DOI PMC

Palomo J., Marchiol T., Piotet J., Fauconnier L., Robinet M., Reverchon F., et al. . (2014). Role of IL-1beta in experimental cystic fibrosis upon P. aeruginosa infection. PLoS One 9:e114884. 10.1371/journal.pone.0114884, PMID: PubMed DOI PMC

Portal C., Gouyer V., Leonard R., Husson M. O., Gottrand F., Desseyn J. L. (2018). Long-term dietary (n-3) polyunsaturated fatty acids show benefits to the lungs of Cftr F508del mice. PLoS One 13:e0197808. 10.1371/journal.pone.0197808, PMID: PubMed DOI PMC

Rahmaniyan M., Curley R. W., Jr., Obeid L. M., Hannun Y. A., Kraveka J. M. (2011). Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide. J. Biol. Chem. 286, 24754–24764. 10.1074/jbc.M111.250779, PMID: PubMed DOI PMC

Rubin J. L., O’Callaghan L., Pelligra C., Konstan M. W., Ward A., Ishak J. K., et al. . (2019). Modeling long-term health outcomes of patients with cystic fibrosis homozygous for F508del-CFTR treated with lumacaftor/ivacaftor. Ther. Adv. Respir. Dis. 13:1753466618820186. 10.1177/1753466618820186, PMID: PubMed DOI PMC

Ruffin M., Roussel L., Maille E., Rousseau S., Brochiero E. (2018). Vx-809/Vx-770 treatment reduces inflammatory response to Pseudomonas aeruginosa in primary differentiated cystic fibrosis bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 314, L635–L641. 10.1152/ajplung.00198.2017, PMID: PubMed DOI

Scholte B. J., Horati H., Veltman M., Vreeken R. J., Garratt L. W., Tiddens H., et al. . (2019). Oxidative stress and abnormal bioactive lipids in early cystic fibrosis lung disease. J. Cyst. Fibros. 18, 781–789. 10.1016/j.jcf.2019.04.011, PMID: PubMed DOI

Scholte B. J., Brouwer R. W., Hanrahan J. W. (2021). “Cystic fibrosis Airway primary epithelial cells in air-liquid interrface culture show abnormal inflammation and lipid metabolism related RNA expresssion compared to non-CF” in NCBI GEO.

Sherratt S. C. R., Mason R. P. (2018). Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction. Chem. Phys. Lipids 212, 73–79. 10.1016/j.chemphyslip.2018.01.002, PMID: PubMed DOI

Stolarczyk M., Amatngalim G. D., Yu X., Veltman M., Hiemstra P. S., Scholte B. J. (2016). ADAM17 and EGFR regulate IL-6 receptor and amphiregulin mRNA expression and release in cigarette smoke-exposed primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD). Physiol. Rep. 4:e12878. 10.14814/phy2.12878, PMID: PubMed DOI PMC

Stolarczyk M., Scholte B. J. (2018). The EGFR-ADAM17 axis in chronic obstructive pulmonary disease and cystic fibrosis lung pathology. Mediat. Inflamm. 2018:1067134. 10.1155/2018/1067134, PMID: PubMed DOI PMC

Stolarczyk M., Veit G., Schnur A., Veltman M., Lukacs G. L., Scholte B. J. (2018). Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity. Am. J. Physiol. Lung Cell. Mol. Physiol. 314, L555–L568. 10.1152/ajplung.00458.2017, PMID: PubMed DOI

Teopompi E., Rise P., Pisi R., Buccellati C., Aiello M., Pisi G., et al. . (2019). Arachidonic acid and docosahexaenoic acid metabolites in the airways of adults with cystic fibrosis: effect of docosahexaenoic acid supplementation. Front. Pharmacol. 10:938. 10.3389/fphar.2019.00938, PMID: PubMed DOI PMC

Veit G., Avramescu R. G., Perdomo D., Phuan P. W., Bagdany M., Apaja P. M., et al. . (2014). Some gating potentiators, including VX-770, diminish DeltaF508-CFTR functional expression. Sci. Transl. Med. 6:246ra297. 10.1126/scitranslmed.3008889, PMID: PubMed DOI PMC

Veltman M., Stolarczyk M., Radzioch D., Wojewodka G., De Sanctis J. B., Dik W. A., et al. . (2016). Correction of lung inflammation in a F508del CFTR murine cystic fibrosis model by the sphingosine-1-phosphate lyase inhibitor LX2931. Am. J. Physiol. Lung Cell. Mol. Physiol. 311:L1000–L1014. 10.1152/ajplung.00298.2016, PMID: PubMed DOI

Vlahakos D., Arkadopoulos N., Kostopanagiotou G., Siasiakou S., Kaklamanis L., Degiannis D., et al. . (2012). Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs. Artif. Organs 36, 400–408. 10.1111/j.1525-1594.2011.01385.x, PMID: PubMed DOI

Watson H., Stackhouse C. (2020). Omega-3 fatty acid supplementation for cystic fibrosis. Cochrane Database Syst. Rev. 4:CD002201. 10.1002/14651858.CD002201.pub6, PMID: PubMed DOI PMC

Yoshida M., Minagawa S., Araya J., Sakamoto T., Hara H., Tsubouchi K., et al. . (2019). Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat. Commun. 10:3145. 10.1038/s41467-019-10991-7, PMID: PubMed DOI PMC

Youssef M., De Sanctis J. B., Kanagaratham C., Tao S., Ahmed E., Radzioch D. (2020a). Efficacy of optimized treatment protocol using LAU-7b formulation against ovalbumin (OVA) and house dust mite (HDM) -induced allergic asthma in atopic hyperresponsive A/J mice. Pharm. Res. 37:31. 10.1007/s11095-019-2743-z, PMID: PubMed DOI

Youssef M., De Sanctis J. B., Shah J., Dumut D., Hajduch M., Naumova A. K., et al. . (2020b). Treatment of allergic asthma with Fenretinide formulation (LAU-7b) downregulates Ormdl3 expression and normalizes ceramides imbalance. J. Pharmacol. Exp. Ther. 373, 476–487. 10.1124/jpet.119.263715, PMID: PubMed DOI

Youssef M., De Sanctis J. B., Shah J., Dumut D. C., Hajduch M., Petrof B. J., et al. . (2020c). Age-dependent progression in lung pathophysiology can be prevented by restoring fatty acid and ceramide imbalance in cystic fibrosis. Lung 198, 459–469. 10.1007/s00408-020-00353-2, PMID: PubMed DOI

Zhang Z., Zhong Y., Li X., Huang X., Du L. (2020). Anti-placental growth factor antibody ameliorates hyperoxia-mediated impairment of lung development in neonatal rats. Braz. J. Med. Biol. Res. 53:e8917. 10.1590/1414-431X20198917, PMID: PubMed DOI PMC

Zhao S., Luo G., Wu H., Zhang L. (2019). Placental growth factor gene silencing mitigates the epithelialtomesenchymal transition via the p38 MAPK pathway in rats with hyperoxiainduced lung injury. Mol. Med. Rep. 20, 4867–4874. 10.3892/mmr.2019.10785, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...