CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33613309
PubMed Central
PMC7891400
DOI
10.3389/fphys.2021.619442
Knihovny.cz E-zdroje
- Klíčová slova
- bronchial epithelial cell, ceramide species, cystic fibrosis, cystic fibrosis transmembrane conductance regulator corrector therapy, cytokine array, lipidomics, oxidative stress, polyunsaturated (essential) fatty acids,
- Publikační typ
- časopisecké články MeSH
A deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in CF leads to chronic lung disease. CF is associated with abnormalities in fatty acids, ceramides, and cholesterol, their relationship with CF lung pathology is not completely understood. Therefore, we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well-differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell-autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and of long- to very long-chain ceramide species (LCC/VLCC), reduced levels of total ceramides and ceramide precursors. In addition to the retinoic acid analog fenretinide, the anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and oxidative stress, confirming the CFTR dependence of lipid ratios. However, despite functional correction of CF cells up to 60% of non-CF in Ussing chamber experiments, a 72-h triple compound treatment (elexacaftor/tezacaftor/ivacaftor surrogate) did not completely normalize lipid imbalance or oxidative stress. Protein array analysis revealed differential expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions, including enhanced secretion of the neutrophil activator CXCL5, and the T-cell activator CCL17. However, treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, ivacaftor/lumacaftor and ivacaftor/tezacaftor/elexacaftor, did not effectively suppress the inflammatory phenotype. We propose that CFTR deficiency causes oxidative stress in CF airway epithelium, affecting multiple bioactive lipid metabolic pathways, which likely play a role in CF lung disease progression. A combination of anti-oxidant, anti-inflammatory and CFTR targeted therapeutics may be required for full correction of the CF phenotype.
Cell Biology Department Erasmus Medical Center Rotterdam Netherlands
Center for Biomics Erasmus Medical Center Rotterdam Netherlands
Center for Innovative Medical Models LMU Munich Munich Germany
Department of Physiology CF Translational Research Centre McGill University Montreal QC Canada
Large Animal Models for Cardiovascular Research TU Munich Munich Germany
Pediatric Pulmonology Sophia Children's Hospital Erasmus Medical Center Rotterdam Netherlands
Zobrazit více v PubMed
Adams C., Icheva V., Deppisch C., Lauer J., Herrmann G., Graepler-Mainka U., et al. . (2016). Long-Term pulmonal therapy of cystic fibrosis-patients with amitriptyline. Cell. Physiol. Biochem. 39, 565–572. 10.1159/000445648, PMID: PubMed DOI
Alashkar Alhamwe B., Alhamdan F., Ruhl A., Potaczek D. P., Renz H. (2020). The role of epigenetics in allergy and asthma development. Curr. Opin. Allergy Clin. Immunol. 20, 48–55. 10.1097/ACI.0000000000000598, PMID: PubMed DOI
Ali M., Saroha A., Pewzner-Jung Y., Futerman A. H. (2015). LPS-mediated septic shock is augmented in ceramide synthase 2 null mice due to elevated activity of TNFalpha-converting enzyme. FEBS Lett. 589, 2213–2217. 10.1016/j.febslet.2015.06.045, PMID: PubMed DOI
Amatngalim G. D., Schrumpf J. A., Dishchekenian F., Mertens T. C. J., Ninaber D. K., van der Linden A. C., et al. . (2018). Aberrant epithelial differentiation by cigarette smoke dysregulates respiratory host defence. Eur. Respir. J. 51:1701009. 10.1183/13993003.01009-2017, PMID: PubMed DOI
Anding A. L., Jones J. D., Newton M. A., Curley R. W., Jr., Clagett-Dame M. (2018). 4-HPR is an endoplasmic reticulum stress aggravator and sensitizes breast cancer cells resistant to TRAIL/Apo2L. Anticancer Res. 38, 4403–4416. 10.21873/anticanres.12742, PMID: PubMed DOI
Bear C. E. (2020). A therapy for most with cystic fibrosis. Cell 180:211. 10.1016/j.cell.2019.12.032, PMID: PubMed DOI
Brasier A. R., Boldogh I. (2019). Targeting inducible epigenetic reprogramming pathways in chronic airway remodeling. Drugs Context 8:2019-8-3. 10.7573/dic.2019-8-3, PMID: PubMed DOI PMC
Burns D. P., Drummond S. E., Bolger D., Coiscaud A., Murphy K. H., Edge D., et al. . (2019). N-acetylcysteine decreases fibrosis and increases force-generating capacity of mdx diaphragm. Antioxidants 8:581. 10.3390/antiox8120581, PMID: PubMed DOI PMC
Cantin A. M., North S. L., Hubbard R. C., Crystal R. G. (1987). Normal alveolar epithelial lining fluid contains high levels of glutathione. J. Appl. Physiol. 63, 152–157. 10.1152/jappl.1987.63.1.152, PMID: PubMed DOI
Chandler J. D., Margaroli C., Horati H., Kilgore M. B., Veltman M., Liu H. K., et al. . (2018). Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. Eur. Respir. J. 52:1801118. 10.1183/13993003.01118-2018, PMID: PubMed DOI PMC
Chen J., Dai L., Wang T., He J., Wang Y., Wen F. (2019). The elevated CXCL5 levels in circulation are associated with lung function decline in COPD patients and cigarette smoking-induced mouse model of COPD. Ann. Med. 51, 314–329. 10.1080/07853890.2019.1639809, PMID: PubMed DOI PMC
Cholon D. M., Quinney N. L., Fulcher M. L., Esther C. R., Jr., Das J., Dokholyan N. V., et al. . (2014). Potentiator ivacaftor abrogates pharmacological correction of DeltaF508 CFTR in cystic fibrosis. Sci. Transl. Med. 6:246ra296. 10.1126/scitranslmed.3008680, PMID: PubMed DOI PMC
Ciofu O., Smith S., Lykkesfeldt J. (2020). A systematic Cochrane review of antioxidant supplementation lung disease for cystic fibrosis. Paediatr. Respir. Rev. 33, 28–29. 10.1016/j.prrv.2019.12.001, PMID: PubMed DOI
Csanady L., Torocsik B. (2019). Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations. elife 8:e46450. 10.7554/eLife.46450, PMID: PubMed DOI PMC
de Bari L., Favia M., Bobba A., Lassandro R., Guerra L., Atlante A. (2018). Aberrant GSH reductase and NOX activities concur with defective CFTR to pro-oxidative imbalance in cystic fibrosis airways. J. Bioenerg. Biomembr. 50, 117–129. 10.1007/s10863-018-9748-x, PMID: PubMed DOI
Devlin C. M., Lahm T., Hubbard W. C., Van Demark M., Wang K. C., Wu X., et al. . (2011). Dihydroceramide-based response to hypoxia. J. Biol. Chem. 286, 38069–38078. 10.1074/jbc.M111.297994, PMID: PubMed DOI PMC
Dickerhof N., Pearson J. F., Hoskin T. S., Berry L. J., Turner R., Sly P. D., et al. . (2017). Oxidative stress in early cystic fibrosis lung disease is exacerbated by airway glutathione deficiency. Free Radic. Biol. Med. 113, 236–243. 10.1016/j.freeradbiomed.2017.09.028, PMID: PubMed DOI
Ebenezer D. L., Berdyshev E. V., Bronova I. A., Liu Y., Tiruppathi C., Komarova Y., et al. . (2019). Pseudomonas aeruginosa stimulates nuclear sphingosine-1-phosphate generation and epigenetic regulation of lung inflammatory injury. Thorax 74, 579–591. 10.1136/thoraxjnl-2018-212378, PMID: PubMed DOI PMC
Esposito S., Tosco A., Villella V. R., Raia V., Kroemer G., Maiuri L. (2016). Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis. Mol. Cell. Pediatr. 3:13. 10.1186/s40348-016-0040-z, PMID: PubMed DOI PMC
Freedman S. D., Katz M. H., Parker E. M., Laposata M., Urman M. Y., Alvarez J. G. (1999). A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr(−/−) mice. Proc. Natl. Acad. Sci. U. S. A. 96, 13995–14000. 10.1073/pnas.96.24.13995, PMID: PubMed DOI PMC
Fussbroich D., Colas R. A., Eickmeier O., Trischler J., Jerkic S. P., Zimmermann K., et al. . (2020). A combination of LCPUFA ameliorates airway inflammation in asthmatic mice by promoting pro-resolving effects and reducing adverse effects of EPA. Mucosal Immunol. 13, 481–492. 10.1038/s41385-019-0245-2, PMID: PubMed DOI PMC
Fussbroich D., Zimmermann K., Gopel A., Eickmeier O., Trischler J., Zielen S., et al. . (2019). A specific combined long-chain polyunsaturated fatty acid supplementation reverses fatty acid profile alterations in a mouse model of chronic asthma. Lipids Health Dis. 18:16. 10.1186/s12944-018-0947-6, PMID: PubMed DOI PMC
Garic D., De Sanctis J. B., Dumut D. C., Shah J., Pena M. J., Youssef M., et al. . (2020). Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865:158538. 10.1016/j.bbalip.2019.158538, PMID: PubMed DOI
Garic D., De Sanctis J. B., Wojewodka G., Houle D., Cupri S., Abu-Arish A., et al. . (2017). Fenretinide differentially modulates the levels of long- and very long-chain ceramides by downregulating Cers5 enzyme: evidence from bench to bedside. J. Mol. Med. 95, 1053–1064. 10.1007/s00109-017-1564-y, PMID: PubMed DOI
Ghio A. J., Roggli V. L., Soukup J. M., Richards J. H., Randell S. H., Muhlebach M. S. (2013). Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients. J. Cyst. Fibros. 12, 390–398. 10.1016/j.jcf.2012.10.010, PMID: PubMed DOI
Grassme H., Carpinteiro A., Edwards M. J., Gulbins E., Becker K. A. (2014). Regulation of the inflammasome by ceramide in cystic fibrosis lungs. Cell. Physiol. Biochem. 34, 45–55. 10.1159/000362983, PMID: PubMed DOI
Guilbault C., De Sanctis J. B., Wojewodka G., Saeed Z., Lachance C., Skinner T. A., et al. . (2008). Fenretinide corrects newly found ceramide deficiency in cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 38, 47–56. 10.1165/rcmb.2007-0036OC, PMID: PubMed DOI
Guilbault C., Wojewodka G., Saeed Z., Hajduch M., Matouk E., De Sanctis J. B., et al. . (2009). Cystic fibrosis fatty acid imbalance is linked to ceramide deficiency and corrected by fenretinide. Am. J. Respir. Cell Mol. Biol. 41, 100–106. 10.1165/rcmb.2008-0279OC, PMID: PubMed DOI
Hayes D., Jr., Harhay M. O., Nicol K. K., Liyanage N. P. M., Keller B. C., Robinson R. T. (2020). Lung T-cell profile alterations are associated with bronchiolitis obliterans syndrome in cystic fibrosis lung transplant recipients. Lung 198, 157–161. 10.1007/s00408-019-00298-1, PMID: PubMed DOI
Hisert K. B., Birkland T. P., Schoenfelt K. Q., Long M. E., Grogan B., Carter S., et al. . (2020). CFTR modulator therapy enhances peripheral blood monocyte contributions to immune responses in people with cystic fibrosis. Front. Pharmacol. 11:1219. 10.3389/fphar.2020.01219, PMID: PubMed DOI PMC
Holden P., Nair L. S. (2019). Deferoxamine: an angiogenic and antioxidant molecule for tissue regeneration. Tissue Eng. Part B Rev. 25, 461–470. 10.1089/ten.TEB.2019.0111, PMID: PubMed DOI
Horati H., Janssens H. M., Margaroli C., Veltman M., Stolarczyk M., Kilgore M. B., et al. . (2020). Airway profile of bioactive lipids predicts early progression of lung disease in cystic fibrosis. J. Cyst. Fibros. 19, 902–909. 10.1016/j.jcf.2020.01.010, PMID: PubMed DOI PMC
Huaux F., Noel S., Dhooghe B., Panin N., Lo Re S., Lison D., et al. . (2013). Dysregulated proinflammatory and fibrogenic phenotype of fibroblasts in cystic fibrosis. PLoS One 8:e64341. 10.1371/journal.pone.0064341, PMID: PubMed DOI PMC
Jarosz-Griffiths H. H., Scambler T., Wong C. H., Lara-Reyna S., Holbrook J., Martinon F., et al. . (2020). Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis. elife 9:e54556. 10.7554/eLife.54556, PMID: PubMed DOI PMC
Kanagaratham C., Kalivodova A., Najdekr L., Friedecky D., Adam T., Hajduch M., et al. . (2014). Fenretinide prevents inflammation and airway hyperresponsiveness in a mouse model of allergic asthma. Am. J. Respir. Cell Mol. Biol. 51, 783–792. 10.1165/rcmb.2014-0121OC, PMID: PubMed DOI
Keating D., Marigowda G., Burr L., Daines C., Mall M. A., McKone E. F., et al. . (2018). VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N. Engl. J. Med. 379, 1612–1620. 10.1056/NEJMoa1807120, PMID: PubMed DOI PMC
Kleme M. L., Sane A., Garofalo C., Seidman E., Brochiero E., Berthiaume Y., et al. . (2018). CFTR deletion confers mitochondrial dysfunction and disrupts lipid homeostasis in intestinal epithelial cells. Nutrients 10:836. 10.3390/nu10070836, PMID: PubMed DOI PMC
Klymiuk N., Mundhenk L., Kraehe K., Wuensch A., Plog S., Emrich D., et al. . (2012). Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J. Mol. Med. 90, 597–608. 10.1007/s00109-011-0839-y, PMID: PubMed DOI
Kogan I., Ramjeesingh M., Li C., Kidd J. F., Wang Y., Leslie E. M., et al. . (2003). CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J. 22, 1981–1989. 10.1093/emboj/cdg194, PMID: PubMed DOI PMC
Li C., Guo S., Pang W., Zhao Z. (2019). Crosstalk between acid sphingomyelinase and inflammasome signaling and their emerging roles in tissue injury and fibrosis. Front. Cell Dev. Biol. 7:378. 10.3389/fcell.2019.00378, PMID: PubMed DOI PMC
Liessi N., Pesce E., Braccia C., Bertozzi S. M., Giraudo A., Bandiera T., et al. . (2020). Distinctive lipid signatures of bronchial epithelial cells associated with cystic fibrosis drugs, including Trikafta. JCI Insight 5:e138722. 10.1172/jci.insight.138722, PMID: PubMed DOI PMC
Linsdell P., Hanrahan J. W. (1998). Glutathione permeability of CFTR. Am. J. Phys. 275, C323–C326. 10.1152/ajpcell.1998.275.1.C323, PMID: PubMed DOI
Loberto N., Mancini G., Bassi R., Carsana E. V., Tamanini A., Pedemonte N., et al. . (2020). Sphingolipids and plasma membrane hydrolases in human primary bronchial cells during differentiation and their altered patterns in cystic fibrosis. Glycoconj. J. 37, 623–633. 10.1007/s10719-020-09935-x, PMID: PubMed DOI PMC
Margaroli C., Garratt L. W., Horati H., Dittrich A. S., Rosenow T., Montgomery S. T., et al. . (2019). Elastase exocytosis by airway neutrophils is associated with early lung damage in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 199, 873–881. 10.1164/rccm.201803-0442OC, PMID: PubMed DOI PMC
Matthes E., Goepp J., Carlile G. W., Luo Y., Dejgaard K., Billet A., et al. . (2016). Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor). Br. J. Pharmacol. 173, 459–470. 10.1111/bph.13365, PMID: PubMed DOI PMC
Matthes E., Goepp J., Martini C., Shan J., Liao J., Thomas D. Y., et al. . (2018). Variable responses to CFTR correctors in vitro: estimating the design effect in precision medicine. Front. Pharmacol. 9:1490. 10.3389/fphar.2018.01490, PMID: PubMed DOI PMC
McIlroy G. D., Tammireddy S. R., Maskrey B. H., Grant L., Doherty M. K., Watson D. G., et al. . (2016). Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem. Pharmacol. 100, 86–97. 10.1016/j.bcp.2015.11.017, PMID: PubMed DOI PMC
Merkert S., Schubert M., Olmer R., Engels L., Radetzki S., Veltman M., et al. . (2019). High-throughput screening for modulators of CFTR activity based on genetically engineered cystic fibrosis disease-specific iPSCs. Stem Cell Reports 12, 1389–1403. 10.1016/j.stemcr.2019.04.014, PMID: PubMed DOI PMC
Morin C., Cantin A. M., Vezina F. A., Fortin S. (2018). The efficacy of MAG-DHA for correcting AA/DHA imbalance of cystic fibrosis patients. Mar. Drugs 16:184. 10.3390/md16060184, PMID: PubMed DOI PMC
Murphy S. V., Ribeiro C. M. P. (2019). Cystic fibrosis inflammation: hyperinflammatory, hypoinflammatory, or both? Am. J. Respir. Cell Mol. Biol. 61, 273–274. 10.1165/rcmb.2019-0107ED, PMID: PubMed DOI PMC
Orienti I., Gentilomi G. A., Farruggia G. (2020). Pulmonary delivery of fenretinide: a possible adjuvant treatment in COVID-19. Int. J. Mol. Sci. 21:3812. 10.3390/ijms21113812, PMID: PubMed DOI PMC
Palomo J., Marchiol T., Piotet J., Fauconnier L., Robinet M., Reverchon F., et al. . (2014). Role of IL-1beta in experimental cystic fibrosis upon P. aeruginosa infection. PLoS One 9:e114884. 10.1371/journal.pone.0114884, PMID: PubMed DOI PMC
Portal C., Gouyer V., Leonard R., Husson M. O., Gottrand F., Desseyn J. L. (2018). Long-term dietary (n-3) polyunsaturated fatty acids show benefits to the lungs of Cftr F508del mice. PLoS One 13:e0197808. 10.1371/journal.pone.0197808, PMID: PubMed DOI PMC
Rahmaniyan M., Curley R. W., Jr., Obeid L. M., Hannun Y. A., Kraveka J. M. (2011). Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide. J. Biol. Chem. 286, 24754–24764. 10.1074/jbc.M111.250779, PMID: PubMed DOI PMC
Rubin J. L., O’Callaghan L., Pelligra C., Konstan M. W., Ward A., Ishak J. K., et al. . (2019). Modeling long-term health outcomes of patients with cystic fibrosis homozygous for F508del-CFTR treated with lumacaftor/ivacaftor. Ther. Adv. Respir. Dis. 13:1753466618820186. 10.1177/1753466618820186, PMID: PubMed DOI PMC
Ruffin M., Roussel L., Maille E., Rousseau S., Brochiero E. (2018). Vx-809/Vx-770 treatment reduces inflammatory response to Pseudomonas aeruginosa in primary differentiated cystic fibrosis bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 314, L635–L641. 10.1152/ajplung.00198.2017, PMID: PubMed DOI
Scholte B. J., Horati H., Veltman M., Vreeken R. J., Garratt L. W., Tiddens H., et al. . (2019). Oxidative stress and abnormal bioactive lipids in early cystic fibrosis lung disease. J. Cyst. Fibros. 18, 781–789. 10.1016/j.jcf.2019.04.011, PMID: PubMed DOI
Scholte B. J., Brouwer R. W., Hanrahan J. W. (2021). “Cystic fibrosis Airway primary epithelial cells in air-liquid interrface culture show abnormal inflammation and lipid metabolism related RNA expresssion compared to non-CF” in NCBI GEO.
Sherratt S. C. R., Mason R. P. (2018). Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction. Chem. Phys. Lipids 212, 73–79. 10.1016/j.chemphyslip.2018.01.002, PMID: PubMed DOI
Stolarczyk M., Amatngalim G. D., Yu X., Veltman M., Hiemstra P. S., Scholte B. J. (2016). ADAM17 and EGFR regulate IL-6 receptor and amphiregulin mRNA expression and release in cigarette smoke-exposed primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD). Physiol. Rep. 4:e12878. 10.14814/phy2.12878, PMID: PubMed DOI PMC
Stolarczyk M., Scholte B. J. (2018). The EGFR-ADAM17 axis in chronic obstructive pulmonary disease and cystic fibrosis lung pathology. Mediat. Inflamm. 2018:1067134. 10.1155/2018/1067134, PMID: PubMed DOI PMC
Stolarczyk M., Veit G., Schnur A., Veltman M., Lukacs G. L., Scholte B. J. (2018). Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity. Am. J. Physiol. Lung Cell. Mol. Physiol. 314, L555–L568. 10.1152/ajplung.00458.2017, PMID: PubMed DOI
Teopompi E., Rise P., Pisi R., Buccellati C., Aiello M., Pisi G., et al. . (2019). Arachidonic acid and docosahexaenoic acid metabolites in the airways of adults with cystic fibrosis: effect of docosahexaenoic acid supplementation. Front. Pharmacol. 10:938. 10.3389/fphar.2019.00938, PMID: PubMed DOI PMC
Veit G., Avramescu R. G., Perdomo D., Phuan P. W., Bagdany M., Apaja P. M., et al. . (2014). Some gating potentiators, including VX-770, diminish DeltaF508-CFTR functional expression. Sci. Transl. Med. 6:246ra297. 10.1126/scitranslmed.3008889, PMID: PubMed DOI PMC
Veltman M., Stolarczyk M., Radzioch D., Wojewodka G., De Sanctis J. B., Dik W. A., et al. . (2016). Correction of lung inflammation in a F508del CFTR murine cystic fibrosis model by the sphingosine-1-phosphate lyase inhibitor LX2931. Am. J. Physiol. Lung Cell. Mol. Physiol. 311:L1000–L1014. 10.1152/ajplung.00298.2016, PMID: PubMed DOI
Vlahakos D., Arkadopoulos N., Kostopanagiotou G., Siasiakou S., Kaklamanis L., Degiannis D., et al. . (2012). Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs. Artif. Organs 36, 400–408. 10.1111/j.1525-1594.2011.01385.x, PMID: PubMed DOI
Watson H., Stackhouse C. (2020). Omega-3 fatty acid supplementation for cystic fibrosis. Cochrane Database Syst. Rev. 4:CD002201. 10.1002/14651858.CD002201.pub6, PMID: PubMed DOI PMC
Yoshida M., Minagawa S., Araya J., Sakamoto T., Hara H., Tsubouchi K., et al. . (2019). Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat. Commun. 10:3145. 10.1038/s41467-019-10991-7, PMID: PubMed DOI PMC
Youssef M., De Sanctis J. B., Kanagaratham C., Tao S., Ahmed E., Radzioch D. (2020a). Efficacy of optimized treatment protocol using LAU-7b formulation against ovalbumin (OVA) and house dust mite (HDM) -induced allergic asthma in atopic hyperresponsive A/J mice. Pharm. Res. 37:31. 10.1007/s11095-019-2743-z, PMID: PubMed DOI
Youssef M., De Sanctis J. B., Shah J., Dumut D., Hajduch M., Naumova A. K., et al. . (2020b). Treatment of allergic asthma with Fenretinide formulation (LAU-7b) downregulates Ormdl3 expression and normalizes ceramides imbalance. J. Pharmacol. Exp. Ther. 373, 476–487. 10.1124/jpet.119.263715, PMID: PubMed DOI
Youssef M., De Sanctis J. B., Shah J., Dumut D. C., Hajduch M., Petrof B. J., et al. . (2020c). Age-dependent progression in lung pathophysiology can be prevented by restoring fatty acid and ceramide imbalance in cystic fibrosis. Lung 198, 459–469. 10.1007/s00408-020-00353-2, PMID: PubMed DOI
Zhang Z., Zhong Y., Li X., Huang X., Du L. (2020). Anti-placental growth factor antibody ameliorates hyperoxia-mediated impairment of lung development in neonatal rats. Braz. J. Med. Biol. Res. 53:e8917. 10.1590/1414-431X20198917, PMID: PubMed DOI PMC
Zhao S., Luo G., Wu H., Zhang L. (2019). Placental growth factor gene silencing mitigates the epithelialtomesenchymal transition via the p38 MAPK pathway in rats with hyperoxiainduced lung injury. Mol. Med. Rep. 20, 4867–4874. 10.3892/mmr.2019.10785, PMID: PubMed DOI PMC