Treatment With LAU-7b Complements CFTR Modulator Therapy by Improving Lung Physiology and Normalizing Lipid Imbalance Associated With CF Lung Disease
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
35668939
PubMed Central
PMC9163687
DOI
10.3389/fphar.2022.876842
PII: 876842
Knihovny.cz E-resources
- Keywords
- LAU-7b, TRIKAFTA, ceramides, cystic fibrosis, fenretinide (4-HPR), lung physiology, sphingolipids, triple therapy,
- Publication type
- Journal Article MeSH
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease in Caucasians, affecting more than 100,000 individuals worldwide. It is caused by pathogenic variants in the gene encoding CFTR, an anion channel at the plasma membrane of epithelial and other cells. Many CF pathogenic variants disrupt the biosynthesis and trafficking of CFTR or reduce its ion channel function. The most frequent mutation, loss of a phenylalanine at position 508 (F508del), leads to misfolding, retention in the endoplasmic reticulum, and premature degradation of the protein. The therapeutics available for treating CF lung disease include antibiotics, mucolytics, bronchodilators, physiotherapy, and most recently CFTR modulators. To date, no cure for this life shortening disease has been found. Treatment with the Triple combination drug therapy, TRIKAFTA®, is composed of three drugs: Elexacaftor (VX-445), Tezacaftor (VX-661) and Ivacaftor (VX-770). This therapy, benefits persons with CF, improving their weight, lung function, energy levels (as defined by reduced fatigue), and overall quality of life. We examined the effect of combining LAU-7b oral treatment and Triple therapy combination on lung function in a F508deltm1EUR mouse model that displays lung abnormalities relevant to human CF. We assessed lung function, lung histopathology, protein oxidation, lipid oxidation, and fatty acid and lipid profiles in F508deltm1EUR mice.
Czech Advanced Technology and Research Institute Palacky University Olomouc Czechia
Department of Biomedical Engineering McGill University Montreal QC Canada
Department of Physiology McGill University Montreal QC Canada
Faculty of Medicine McGill University Montreal QC Canada
See more in PubMed
Andersson C., Al-Turkmani M. R., Savaille J. E., Alturkmani R., Katrangi W., Cluette-Brown J. E., et al. (2008). Cell Culture Models Demonstrate that CFTR Dysfunction Leads to Defective Fatty Acid Composition and Metabolism. J. Lipid Res. 49 (8), 1692–1700. 10.1194/jlr.M700388-JLR200 PubMed DOI PMC
Bebok Z., Collawn J. F., Wakefield J., Parker W., Li Y., Varga K., et al. (2005). Failure of cAMP Agonists to Activate Rescued deltaF508 CFTR in CFBE41o- Airway Epithelial Monolayers. J. Physiol. 569 (2), 601–615. 10.1113/jphysiol.2005.096669 PubMed DOI PMC
Bruscia E., Sangiuolo F., Sinibaldi P., Goncz K. K., Novelli G., Gruenert D. C. (2002). Isolation of CF Cell Lines Corrected at DeltaF508-CFTR Locus by SFHR-Mediated Targeting. Gene Ther. 9 (11), 683–685. 10.1038/sj.gt.3301741 PubMed DOI
Carnovale V., Iacotucci P., Terlizzi V., Colangelo C., Ferrillo L., Pepe A., et al. (2022). Elexacaftor/Tezacaftor/Ivacaftor in Patients with Cystic Fibrosis Homozygous for the F508del Mutation and Advanced Lung Disease: A 48-Week Observational Study. J. Clin. Med. 11 (4), 1021. 10.3390/jcm11041021 PubMed DOI PMC
Cheng S. H., Gregory R. J., Marshall J., Paul S., Souza D. W., White G. A., et al. (1990). Defective Intracellular Transport and Processing of CFTR Is the Molecular Basis of Most Cystic Fibrosis. Cell 63 (4), 827–834. 10.1016/0092-8674(90)90148-8 PubMed DOI
Cottrill K. A., Farinha C. M., McCarty N. A. (2020). The Bidirectional Relationship between CFTR and Lipids. Commun. Biol. 3 (1), 179. 10.1038/s42003-020-0909-1 PubMed DOI PMC
Ehrhardt C., Collnot E. M., Baldes C., Becker U., Laue M., Kim K. J., et al. (2006). Towards an In Vitro Model of Cystic Fibrosis Small Airway Epithelium: Characterisation of the Human Bronchial Epithelial Cell Line CFBE41o-. Cell Tissue Res 323 (3), 405–415. 10.1007/s00441-005-0062-7 PubMed DOI
Elizur A., Cannon C. L., Ferkol T. W. (2008). Airway Inflammation in Cystic Fibrosis. Chest 133 (2), 489–495. 10.1378/chest.07-1631 PubMed DOI
Fahy J. V., Dickey B. F. (2010). Airway Mucus Function and Dysfunction. N. Engl. J. Med. 363 (23), 2233–2247. 10.1056/NEJMra0910061 PubMed DOI PMC
Folch J., Lees M., Sloane Stanley G. H. (1957). A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 226 (1), 497–509. 10.1016/s0021-9258(18)64849-5 PubMed DOI
Fontés G., Ghislain J., Benterki I., Zarrouki B., Trudel D., Berthiaume Y., et al. (2015). The ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Is Associated with Progressive Insulin Resistance and Decreased Functional β-Cell Mass in Mice. Diabetes 64 (12), 4112–4122. 10.2337/db14-0810 PubMed DOI PMC
Freedman S. D., Katz M. H., Parker E. M., Laposata M., Urman M. Y., Alvarez J. G. (1999). A Membrane Lipid Imbalance Plays a Role in the Phenotypic Expression of Cystic Fibrosis in Cftr(-/-) Mice. Proc. Natl. Acad. Sci. U S A. 96 (24), 13995–14000. 10.1073/pnas.96.24.13995 PubMed DOI PMC
Garić D., De Sanctis J. B., Wojewodka G., Houle D., Cupri S., Abu-Arish A., et al. (2017). Fenretinide Differentially Modulates the Levels of Long- and Very Long-Chain Ceramides by Downregulating Cers5 Enzyme: Evidence from Bench to Bedside. J. Mol. Med. (Berl) 95 (10), 1053–1064. 10.1007/s00109-017-1564-y PubMed DOI
Garić D., Dumut D. C., Shah J., De Sanctis J. B., Radzioch D. (2020b). The Role of Essential Fatty Acids in Cystic Fibrosis and Normalizing Effect of Fenretinide. Cell Mol Life Sci 77 (21), 4255–4267. 10.1007/s00018-020-03530-x PubMed DOI PMC
Garić D., Humbert L., Fils-Aimé N., Korah J., Zarfabian Y., Lebrun J. J., et al. (2013). Development of Buffers for Fast Semidry Transfer of Proteins. Anal. Biochem. 441 (2), 182–184. 10.1016/j.ab.2013.07.009 PubMed DOI
Garić D., De Sanctis J. B., Dumut D. C., Shah J., Peña M. J., Youssef M., et al. (2020a). Fenretinide Favorably Affects Mucins (MUC5AC/MUC5B) and Fatty Acid Imbalance in a Manner Mimicking CFTR-Induced Correction. Biochim. Biophys. Acta Mol. Cel. Biol. Lipids 1865 (2), 158538. 10.1016/j.bbalip.2019.158538 PubMed DOI
Gentzsch M., Cholon D. M., Quinney N. L., Martino M. E. B., Minges J. T., Boyles S. E., et al. (2021). Airway Epithelial Inflammation In Vitro Augments the Rescue of Mutant CFTR by Current CFTR Modulator Therapies. Front. Pharmacol. 12, 628722. 10.3389/fphar.2021.628722 PubMed DOI PMC
Gorrieri G., Scudieri P., Caci E., Schiavon M., Tomati V., Sirci F., et al. (2016). Goblet Cell Hyperplasia Requires High Bicarbonate Transport to Support Mucin Release. Sci. Rep. 6 (1), 36016. 10.1038/srep36016 PubMed DOI PMC
Guilbault C., De Sanctis J. B., Wojewodka G., Saeed Z., Lachance C., Skinner T. A., et al. (2008). Fenretinide Corrects Newly Found Ceramide Deficiency in Cystic Fibrosis. Am. J. Respir. Cel Mol Biol 38 (1), 47–56. 10.1165/rcmb.2007-0036OC PubMed DOI
Guilbault C., Saeed Z., Downey G. P., Radzioch D. (2007). Cystic Fibrosis Mouse Models. Am. J. Respir. Cel Mol Biol 36 (1), 1–7. 10.1165/rcmb.2006-0184TR PubMed DOI
Guilbault C., Wojewodka G., Saeed Z., Hajduch M., Matouk E., De Sanctis J. B., et al. (2009). Cystic Fibrosis Fatty Acid Imbalance Is Linked to Ceramide Deficiency and Corrected by Fenretinide. Am. J. Respir. Cel Mol Biol 41 (1), 100–106. 10.1165/rcmb.2008-0279OC PubMed DOI
Hahn A., Burrell A., Fanous H., Chaney H., Sami I., Perez G. F., et al. (2018). Antibiotic Multidrug Resistance in the Cystic Fibrosis Airway Microbiome Is Associated with Decreased Diversity. Heliyon 4 (9), e00795. 10.1016/j.heliyon.2018.e00795 PubMed DOI PMC
Hector A., Griese M., Hartl D. (2014). Oxidative Stress in Cystic Fibrosis Lung Disease: an Early Event, but worth Targeting? Eur. Respir. J. 44 (1), 17–19. 10.1183/09031936.00038114 PubMed DOI
Heijerman H. G. M., McKone E. F., Downey D. G., Van Braeckel E., Rowe S. M., Tullis E., et al. (2019). Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 394 (10212), 1940–1948. 10.1016/S0140-6736(19)32597-8 PubMed DOI PMC
Heltshe S. L., Rowe S. M., Skalland M., Baines A., Jain M. (2018). Ivacaftor-treated Patients with Cystic Fibrosis Derive Long-Term Benefit Despite No Short-Term Clinical Improvement. Am. J. Respir. Crit. Care Med. 197 (11), 1483–1486. 10.1164/rccm.201710-2046LE PubMed DOI PMC
Hoy S. M. (2019). Elexacaftor/Ivacaftor/Tezacaftor: First Approval. Drugs 79 (18), 2001–2007. 10.1007/s40265-019-01233-7 PubMed DOI
Hurt K., Bilton D. (2014). Inhaled Interventions in Cystic Fibrosis: Mucoactive and Antibiotic Therapies. Respiration 88 (6), 441–448. 10.1159/000369533 PubMed DOI
Kanagaratham C., Kalivodová A., Najdekr L., Friedecký D., Adam T., Hajduch M., et al. (2014). Fenretinide Prevents Inflammation and Airway Hyperresponsiveness in a Mouse Model of Allergic Asthma. Am. J. Respir. Cel Mol Biol 51 (6), 783–792. 10.1165/rcmb.2014-0121OC PubMed DOI
Kohli P., Levy B. D. (2009). Resolvins and Protectins: Mediating Solutions to Inflammation. Br. J. Pharmacol. 158 (4), 960–971. 10.1111/j.1476-5381.2009.00290.x PubMed DOI PMC
Lachance C., Wojewodka G., Skinner T. A., Guilbault C., De Sanctis J. B., Radzioch D. (2013). Fenretinide Corrects the Imbalance between omega-6 to omega-3 Polyunsaturated Fatty Acids and Inhibits Macrophage Inflammatory Mediators via the ERK Pathway. PLoS One 8 (9), e74875. 10.1371/journal.pone.0074875 PubMed DOI PMC
Lands B. (20152015). Omega-3 PUFAs Lower the Propensity for Arachidonic Acid Cascade Overreactions. Biomed. Res. Int. 2015, 285135. 10.1155/2015/285135 PubMed DOI PMC
Leclair L. W., Hogan D. A. (2010). Mixed Bacterial-Fungal Infections in the CF Respiratory Tract. Med. Mycol. 48 Suppl 1 (Suppl. 1), S125–S132. 10.3109/13693786.2010.521522 PubMed DOI
Liessi N., Pesce E., Braccia C., Bertozzi S. M., Giraudo A., Bandiera T., et al. (2020). Distinctive Lipid Signatures of Bronchial Epithelial Cells Associated with Cystic Fibrosis Drugs, Including Trikafta. JCI insight 5 (16), e138722. 10.1172/jci.insight.138722 PubMed DOI PMC
Lopes-Pacheco M. (2019). CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front. Pharmacol. 10, 1662. 10.3389/fphar.2019.01662 PubMed DOI PMC
Lopes-Pacheco M., Pedemonte N., Veit G. (2021). Discovery of CFTR Modulators for the Treatment of Cystic Fibrosis. Expert Opin. Drug Discov. 16 (8), 897–913. 10.1080/17460441.2021.1912732 PubMed DOI
Lykkesfeldt J. (2007). Malondialdehyde as Biomarker of Oxidative Damage to Lipids Caused by Smoking. Clin. Chim. Acta 380 (1-2), 50–58. 10.1016/j.cca.2007.01.028 PubMed DOI
Mall M., Kreda S. M., Mengos A., Jensen T. J., Hirtz S., Seydewitz H. H., et al. (2004). The ΔF508 Mutation Results in Loss of CFTR Function and Mature Protein in Native Human colon. Gastroenterology 126, 32–41. 10.1053/j.gastro.2003.10.049 PubMed DOI
Middleton P. G., Mall M. A., Dřevínek P., Lands L. C., McKone E. F., Polineni D., et al. (2019). Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 381 (19), 1809–1819. 10.1056/NEJMoa1908639 PubMed DOI PMC
Miele L., Cordella-Miele E., Xing M., Frizzell R., Mukherjee A. B. (1997). Cystic Fibrosis Gene Mutation (deltaF508) Is Associated with an Intrinsic Abnormality in Ca2+-Induced Arachidonic Acid Release by Epithelial Cells. DNA Cel Biol 16 (6), 749–759. 10.1089/dna.1997.16.749 PubMed DOI
Montes de Oca M., Loeb E., Torres S. H., De Sanctis J., Hernández N., Tálamo C. (2008). Peripheral Muscle Alterations in Non-COPD Smokers. Chest 133 (1), 13–18. 10.1378/chest.07-1592 PubMed DOI
Naehrig S., Chao C. M., Naehrlich L. (2017). Cystic Fibrosis. Dtsch Arztebl Int. 114 (33-34), 564–574. 10.3238/arztebl.2017.0564 PubMed DOI PMC
Niehaus W. G., Jr., Samuelsson B. (1968). Formation of Malonaldehyde from Phospholipid Arachidonate during Microsomal Lipid Peroxidation. Eur. J. Biochem. 6 (1), 126–130. 10.1111/j.1432-1033.1968.tb00428.x PubMed DOI
Ohkawa H., Ohishi N., Yagi K. (1979). Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 95 (2), 351–358. 10.1016/0003-2697(79)90738-3 PubMed DOI
O’Riordan C. R., Lachapelle A. L., Marshall J., Higgins E. A., Cheng S. H. (2000). Characterization of the Oligosaccharide Structures Associated with the Cystic Fibrosis Transmembrane Conductance Regulator. Glycobiology 10 (11), 1225–1233. 10.1093/glycob/10.11.1225 PubMed DOI
Petrache I., Kamocki K., Poirier C., Pewzner-Jung Y., Laviad E. L., Schweitzer K. S., et al. (2013). Ceramide Synthases Expression and Role of Ceramide Synthase-2 in the Lung: Insight from Human Lung Cells and Mouse Models. PLoS One 8 (5), e62968. 10.1371/journal.pone.0062968 PubMed DOI PMC
Pinto M. C., Quaresma M. C., Silva I. A. L., Railean V., Ramalho S. S., Amaral M. D. (2021). Synergy in Cystic Fibrosis Therapies: Targeting SLC26A9. Int. J. Mol. Sci. 22 (23), )13064. 10.3390/ijms222313064 PubMed DOI PMC
Puchelle E., Bajolet O., Abély M. (2002). Airway Mucus in Cystic Fibrosis. Paediatr. Respir. Rev. 3 (2), 115–119. 10.1016/s1526-0550(02)00005-7 PubMed DOI
Ratjen F., Bell S. C., Rowe S. M., Goss C. H., Quittner A. L., Bush A. (2015). Cystic Fibrosis. Nat. Rev. Dis. Primers 1, 15010. 10.1038/nrdp.2015.10 PubMed DOI PMC
Ricciotti E., FitzGerald G. A. (2011). Prostaglandins and Inflammation. Arterioscler Thromb. Vasc. Biol. 31 (5), 986–1000. 10.1161/ATVBAHA.110.207449 PubMed DOI PMC
Rommens J. M., Iannuzzi M. C., Kerem B., Drumm M. L., Melmer G., Dean M., et al. (1989). Identification of the Cystic Fibrosis Gene: Chromosome Walking and Jumping. Science 245 (4922), 1059–1065. 10.1126/science.2772657 PubMed DOI
Rottner M., Freyssinet J. M., Martínez M. C. (2009). Mechanisms of the Noxious Inflammatory Cycle in Cystic Fibrosis. Respir. Res. 10 (1), 23. 10.1186/1465-9921-10-23 PubMed DOI PMC
Rowe S. M., Miller S., Sorscher E. J. (2005). Cystic Fibrosis. N. Engl. J. Med. 352 (19), 1992–2001. 10.1056/NEJMra043184 PubMed DOI
Serhan C. N., Yacoubian S., Yang R. (2008). Anti-inflammatory and Proresolving Lipid Mediators. Annu. Rev. Pathol. 3, 279–312. 10.1146/annurev.pathmechdis.3.121806.151409 PubMed DOI PMC
Shteinberg M., Haq I. J., Polineni D., Davies J. C. (2021). Cystic Fibrosis. The Lancet 397 (10290), 2195–2211. 10.1016/s0140-6736(20)32542-3 PubMed DOI
Sinaasappel M., Stern M., Littlewood J., Wolfe S., Steinkamp G., Heijerman H. G., et al. (2002). Nutrition in Patients with Cystic Fibrosis: a European Consensus. J. Cyst Fibros 1 (2), 51–75. 10.1016/s1569-1993(02)00032-2 PubMed DOI
Smith S., Edwards C. T. (2017). Long-acting Inhaled Bronchodilators for Cystic Fibrosis. Cochrane Database Syst. Rev. 12 (12), Cd012102. 10.1002/14651858.CD012102.pub2 PubMed DOI PMC
Smith S., Rowbotham N., Edwards C. (2020). “Short‐acting Inhaled Bronchodilators for Cystic Fibrosis,” in Cochrane Database of Systematic Reviews. New York, NY: John Wiley & Sons Ltd. PubMed PMC
Strandvik B., Gronowitz E., Enlund F., Martinsson T., Wahlström J. (2001). Essential Fatty Acid Deficiency in Relation to Genotype in Patients with Cystic Fibrosis. J. Pediatr. 139 (5), 650–655. 10.1067/mpd.2001.118890 PubMed DOI
Strandvik B. (2010). Fatty Acid Metabolism in Cystic Fibrosis. Prostaglandins, Leukot. Essent. Fatty Acids 83 (3), 121–129. 10.1016/j.plefa.2010.07.002 PubMed DOI
Szczesniak R., Heltshe S. L., Stanojevic S., Mayer-Hamblett N. (2017). Use of FEV1 in Cystic Fibrosis Epidemiologic Studies and Clinical Trials: A Statistical Perspective for the Clinical Researcher. J. Cyst Fibros 16 (3), 318–326. 10.1016/j.jcf.2017.01.002 PubMed DOI PMC
Veit G., Avramescu R. G., Chiang A. N., Houck S. A., Cai Z., Peters K. W., et al. (2016). From CFTR Biology toward Combinatorial Pharmacotherapy: Expanded Classification of Cystic Fibrosis Mutations. Mol. Biol. Cel 27 (3), 424–433. 10.1091/mbc.E14-04-0935 PubMed DOI PMC
Veltman M., De Sanctis J. B., Stolarczyk M., Klymiuk N., Bähr A., Brouwer R. W., et al. (2021). CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but Not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells. Front. Physiol. 12 (24), 619442. 10.3389/fphys.2021.619442 PubMed DOI PMC
Vilela R. M., Lands L. C., Meehan B., Kubow S. (2006). Inhibition of IL-8 Release from CFTR-Deficient Lung Epithelial Cells Following Pre-treatment with Fenretinide. Int. Immunopharmacol 6 (11), 1651–1664. 10.1016/j.intimp.2006.06.012 PubMed DOI
Villella V. R., Tosco A., Esposito S., Bona G., Raia V., Maiuri L. (2019). Mutation-specific Therapies and Drug Repositioning in Cystic Fibrosis. Minerva Pediatr. 71 (3), 287–296. 10.23736/S0026-4946.19.05506-3 PubMed DOI
Weber A. J., Soong G., Bryan R., Saba S., Prince A. (2001). Activation of NF-kappaB in Airway Epithelial Cells Is Dependent on CFTR Trafficking and Cl- Channel Function. Am. J. Physiol. Lung Cel Mol Physiol 281 (1), L71–L78. 10.1152/ajplung.2001.281.1.L71 PubMed DOI
Westhölter D., Schumacher F., Wülfinghoff N., Sutharsan S., Strassburg S., Kleuser B., et al. (2022). CFTR Modulator Therapy Alters Plasma Sphingolipid Profiles in People with Cystic Fibrosis. J. Cystic Fibrosis 18 (3), 37–46. 10.1016/j.jcf.2022.02.005 PubMed DOI
Wilke M., Buijs-Offerman R. M., Aarbiou J., Colledge W. H., Sheppard D. N., Touqui L., et al. (2011). Mouse Models of Cystic Fibrosis: Phenotypic Analysis and Research Applications. J. Cyst Fibros 10 Suppl 2 (Suppl. 2), S152–S171. 10.1016/S1569-1993(11)60020-9 PubMed DOI
Yadav K., Singh M., Angurana S. K., Attri S. V., Sharma G., Tageja M., et al. (2014). Evaluation of Micronutrient Profile of North Indian Children with Cystic Fibrosis: a Case-Control Study. Pediatr. Res. 75 (6), 762–766. 10.1038/pr.2014.30 PubMed DOI
Ye Y. Z., Strong M., Huang Z. Q., Beckman J. S. (1996). Antibodies that Recognize Nitrotyrosine. Methods Enzymol. 269, 201–209. 10.1016/s0076-6879(96)69022-3 PubMed DOI
Youssef M., De Sanctis J. B., Shah J., Dumut D. C., Hajduch M., Petrof B. J., et al. (2020). Age-Dependent Progression in Lung Pathophysiology Can Be Prevented by Restoring Fatty Acid and Ceramide Imbalance in Cystic Fibrosis. Lung 198 (3), 459–469. 10.1007/s00408-020-00353-2 PubMed DOI
Zaher A., ElSaygh J., Elsori D., ElSaygh H., Sanni A. (2021). A Review of Trikafta: Triple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulator Therapy. Cureus 13 (7), e16144. 10.7759/cureus.16144 PubMed DOI PMC
Zemanick E. T., Taylor-Cousar J. L., Davies J., Gibson R. L., Mall M. A., McKone E. F., et al. (2021). A Phase 3 Open-Label Study of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 through 11 Years of Age with Cystic Fibrosis and at Least One F508del Allele. Am. J. Respir. Crit. Care Med. 203 (12), 1522–1532. 10.1164/rccm.202102-0509OC PubMed DOI PMC