Electrochemical Detection of Hydrazine by Carbon Paste Electrode Modified with Ferrocene Derivatives, Ionic Liquid, and CoS2-Carbon Nanotube Nanocomposite

. 2021 Feb 23 ; 6 (7) : 4641-4648. [epub] 20210208

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33644570

The electrocatalytic performance of carbon paste electrode (CPE) modified with ferrocene-derivative (ethyl2-(4-ferrocenyl[1,2,3]triazol-1-yl)acetate), ionic liquid (n-hexyl-3-methylimidazolium hexafluorophosphate), and CoS2-carbon nanotube nanocomposite (EFTA/IL/CoS2-CNT/CPE) was investigated for the electrocatalytic detection of hydrazine. CoS2-CNT nanocomposite was characterized by field emission scanning electron microscopy, X-ray powder diffraction, and transmission electron microscopy. According to the results of cyclic voltammetry, the EFTA/IL/CoS2-CNT-integrated CPE has been accompanied by greater catalytic activities for hydrazine oxidation compared to the other electrodes in phosphate buffer solution at a pH 7.0 as a result of the synergistic impact of fused ferrocene-derivative, IL, and nanocomposite. The sensor responded linearly with increasing concentration of hydrazine from 0.03 to 500.0 μM with a higher sensitivity (0.073 μA μM-1) and lower limit of detection (LOD, 0.015 μM). Furthermore, reasonable reproducibility, lengthy stability, and excellent selectivity were also attained for the proposed sensor. Finally, EFTA/IL/CoS2-CNT/CPE was applied for the detection of hydrazine in water samples, and good recoveries varied from 96.7 to 103.0%.

Zobrazit více v PubMed

Avanes A.; Hasanzadeh-Karamjavan M.; Shokri-Jarcheloo G. Electrocatalytic oxidation and amperometric determination of hydrazine using a carbon paste electrode modified with β-nickel hydroxide nanoplatelets. Microchim. Acta 2019, 186, 441.10.1007/s00604-019-3555-x. PubMed DOI

Salimi A.; Miranzadeh L.; Hallaj R. Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives. Talanta 2008, 75, 147–156. 10.1016/j.talanta.2007.10.044. PubMed DOI

Sun M.; Guo J.; Yang Q.; Xiao N.; Li Y. A new fluorescent and colorimetric sensor for hydrazine and its application in biological systems. J. Mater. Chem. B 2014, 2, 1846–1851. 10.1039/C3TB21753A. PubMed DOI

Cui L.; Ji C.; Peng Z.; Zhong L.; Zhou C.; Yan L.; Qu S.; Zhang S.; Huang C.; Qian X.; Xu Y. Unique tri-output optical probe for specific and ultrasensitive detection of hydrazine. Anal. Chem. 2014, 86, 4611–4617. 10.1021/ac5007552. PubMed DOI

Subramanian S.; Narayanasastri S.; Reddy A. R. K. Doping-induced detection and determination of propellant grade hydrazines by a kinetic spectrophotometric method based on nano and conventional polyaniline using halide ion releasing additives. RSC Adv. 2014, 4, 27404–27413. 10.1039/C4RA02296C. DOI

Liu J.; Zhou W.; You T.; Li F.; Wang E.; Dong S. Detection of hydrazine, methyl hydrazine, and isoniazid by capillary electrophoresis with a palladium-modified microdisk array electrode. Anal. Chem. 1996, 68, 3350–3353. 10.1021/ac9604696. PubMed DOI

Collins G. E.; Rose-Pehrsson S. L. Sensitive, fluorescent detection of hydrazine via derivatization with 2,3-naphthalene dicarboxaldehyde. Anal. Chim. Acta 1993, 284, 207–215. 10.1016/0003-2670(93)80026-H. DOI

Oh J. A.; Shin H. S. Simple and sensitive determination of hydrazine in drinking water by ultra-high-performance liquid chromatography–tandem mass spectrometry after derivatization with naphthalene-2,3-dialdehyde. J. Chromatogr. A 2015, 1395, 73–78. 10.1016/j.chroma.2015.03.051. PubMed DOI

Zen J. M.; Kumar A. S.; Wang H. F. A dual electrochemical sensor for nitrite and nitric oxide. Analyst 2000, 125, 2169–2172. 10.1039/b008176k. PubMed DOI

Oh J. A.; Park J. H.; Shin H. S. Sensitive determination of hydrazine in water by gas chromatography–mass spectrometry after derivatization with ortho-phthalaldehyde. Anal. Chim. Acta 2013, 769, 79–83. 10.1016/j.aca.2013.01.036. PubMed DOI

Li Y.; Song H.; Zhang L.; Zuo P.; Ye B. C.; Yao J.; Chen W. Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosens. Bioelectron. 2016, 78, 308–314. 10.1016/j.bios.2015.11.063. PubMed DOI

Tajik S.; Beitollahi H.; Garkani Nejad F.; Safaei M.; Zhang K.; Le Q. V.; Varma R. S.; Jang H. W.; Shokouhimehr M. Developments and applications of nanomaterial-based carbon paste electrodes. RSC. Adv. 2020, 10, 21561–21581. 10.1039/D0RA03672B. PubMed DOI PMC

Liu T.; Guo Y.; Zhang Z.; Miao Z.; Zhang X.; Su Z. Fabrication of hollow CuO/PANI hybrid nanofibers for non-enzymatic electrochemical detection of H2O2 and glucose. Sens. Actuators, B 2019, 286, 370–376. 10.1016/j.snb.2019.02.006. DOI

Dou B.; Xu L.; Jiang B.; Yuan R.; Xiang Y. Aptamer-functionalized and gold nanoparticle array-decorated magnetic graphene nanosheets enable multiplexed and sensitive electrochemical detection of rare circulating tumor cells in whole blood. Anal. Chem. 2019, 91, 10792–10799. 10.1021/acs.analchem.9b02403. PubMed DOI

Beitollahi H.; Khalilzadeh M. A.; Tajik S.; Safaei M.; Zhang K.; Jang H. W.; Shokouhimehr M. Recent advances in applications of voltammetric sensors modified with ferrocene and its derivatives. ACS Omega 2020, 5, 2049–2059. 10.1021/acsomega.9b03788. PubMed DOI PMC

Kesavan G.; Chen S. M. Sonochemically exfoliated graphitic-carbon nitride for the electrochemical detection of flutamide in environmental samples. Diamond Relat. Mater. 2020, 108, 10797510.1016/j.diamond.2020.107975. DOI

Zhang H.; Huang J.; Hou H.; You T. Electrochemical detection of hydrazine based on electrospun palladium nanoparticle/carbon nanofibers. Electroanalysis 2009, 21, 1869–1874. 10.1002/elan.200904630. DOI

Yang Z.; Zheng X.; Zheng J. Facile synthesis of three-dimensional porous Au@Pt core-shell nanoflowers supported on graphene oxide for highly sensitive and selective detection of hydrazine. Chem. Eng. J. 2017, 327, 431–440. 10.1016/j.cej.2017.06.120. DOI

Ahmar H.; Keshipour S.; Hosseini H.; Fakhari A. R.; Shaabani A.; Bagheri A. Electrocatalytic oxidation of hydrazine at glassy carbon electrode modified with ethylenediamine cellulose immobilized palladium nanoparticles. J. Electroanal. Chem. 2013, 690, 96–103. 10.1016/j.jelechem.2012.11.031. DOI

Rao D.; Sheng Q.; Zheng J. Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine. Sens. Actuators, B 2016, 236, 192–200. 10.1016/j.snb.2016.05.160. DOI

Asadi F.; Azizi S. N.; Ghasemi S. Preparation of Ag nanoparticles on nano cobalt-based metal organic framework (ZIF-67) as catalyst support for electrochemical determination of hydrazine. J. Mater. Sci.: Mater. Electron. 2019, 30, 5410–5420. 10.1007/s10854-019-00834-y. DOI

Ding Y.; Wang Y.; Zhang L.; Zhang H.; Li C. M.; Lei Y. Preparation of TiO2–Pt hybrid nanofibers and their application for sensitive hydrazine detection. Nanoscale 2011, 3, 1149–1157. 10.1039/c0nr00773k. PubMed DOI

Rani G.; Kumar M. Amperometric Determination of Hydrazine Based on Copper Oxide Modified Screen Printed Electrode. Sens. Transducers 2018, 223, 22–25.

Saengsookwaow C.; Rangkupan R.; Chailapakul O.; Rodthongkum N. Nitrogen-doped graphene–polyvinylpyrrolidone/gold nanoparticles modified electrode as a novel hydrazine sensor. Sens. Actuators, B 2016, 227, 524–532. 10.1016/j.snb.2015.12.091. DOI

Beitollahi H.; Karimi-Maleh H.; Khabazzadeh H. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem. 2008, 80, 9848–9851. 10.1021/ac801854j. PubMed DOI

Devaraj M.; Saravanan R.; Deivasigamani R.; Gupta V. K.; Gracia F.; Jayadevan S. Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq. 2016, 221, 930–941. 10.1016/j.molliq.2016.06.028. DOI

Zhang K.; Kirlikovali K. O.; Le Q. V.; Jin Z.; Varma R. S.; Jang H. W.; Farha O. K.; Shokouhimehr M. Extended Metal–Organic Frameworks on Diverse Supports as Electrode Nanomaterials for Electrochemical Energy Storage. ACS Appl. Nano Mater. 2020, 3, 3964–3990. 10.1021/acsanm.0c00702. DOI

Tian H.; Fan H.; Ma J.; Ma L.; Dong G. Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing. Electrochim. Acta 2017, 247, 787–794. 10.1016/j.electacta.2017.07.083. DOI

Tajik S.; Beitollahi H.; Mohammadi S. Z.; Azimzadeh M.; Zhang K.; Le Q. V.; Yamauchu Y.; Jang H. W.; Shokouhiemhr M. Recent developments in electrochemical sensors for detecting hydrazine with different modified electrodes. RSC Adv. 2020, 10, 30481–30498. 10.1039/D0RA03288C. PubMed DOI PMC

Piovesan J. V.; Santana E. R.; Spinelli A. Reduced graphene oxide/gold nanoparticles nanocomposite-modified glassy carbon electrode for determination of endocrine disruptor methylparaben. J. Electroanal. Chem. 2018, 813, 163–170. 10.1016/j.jelechem.2018.02.025. DOI

Zhang K.; Lee T. H.; Noh H.; Farha O. K.; Jang H. W.; Choi J. W.; Shokouhimehr M. Tailorable Topologies for Selectively Controlling Crystals of Expanded Prussian Blue Analogs. Cryst. Growth Des. 2019, 19, 7385–7395. 10.1021/acs.cgd.9b01309. DOI

Tajik S.; Beitollahi H.; Garkani Nejad F.; Kirlikovali K. O.; Le Q. V.; Jang H. W.; Varma R. S.; Farha O. K.; Shokouhimehr M. Recent Electrochemical Applications of Metal–Organic Framework-Based Materials. Cryst. Growth Des. 2020, 20, 7034–7064. 10.1021/acs.cgd.0c00601. DOI

Ganjali M. R.; Beitollahi H.; Zaimbashi R.; Tajik S.; Rezapour M.; Larijani B. Voltammetric determination of dopamine using glassy carbon electrode modified with ZnO/Al2O3 nanocomposite. Int. J. Electrochem. Sci. 2018, 13, 2519–2529. 10.20964/2018.03.11. DOI

Maduraiveeran G.; Sasidharan M.; Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. 10.1016/j.bios.2017.12.031. PubMed DOI

Beitollahi H.; Dourandish Z.; Tajik S.; Ganjali M. R.; Norouzi P.; Faridbod F. Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine. J. Rare Earth 2018, 36, 750–757. 10.1016/j.jre.2018.01.010. DOI

Zhang H.; Li Y.; Zhang G.; Wan P.; Xu T.; Wu X.; Sun X. Highly crystallized cubic cattierite CoS2 for electrochemically hydrogen evolution over wide pH range from 0 to 14. Electrochim. Acta 2014, 148, 170–174. 10.1016/j.electacta.2014.09.164. DOI

Zhuang X.; Chen D.; Zhang S.; Luan F.; Chen L. Reduced grapheneoxide functionalized with a CoS2/ionic liquid composite and decorated with gold nanoparticles for voltammetric sensing of dopamine. Microchim. Acta 2018, 185, 16610.1007/s00604-018-2712-y. PubMed DOI

Amaresh S.; Karthikeyan K.; Jang I. C.; Lee Y. S. Single-step microwave mediated synthesis of the CoS2 anode material for high rate hybrid supercapacitors. J. Mater. Chem. A 2014, 2, 11099–11106. 10.1039/C4TA01633E. DOI

Zhang L.; Wu H. B.; Yan Y.; Wang X.; Lou X. W. D. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ. Sci. 2014, 7, 3302–3306. 10.1039/C4EE01932F. DOI

Li Y.; Wang H.; Xie L.; Liang Y.; Hong G.; Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. 10.1021/ja201269b. PubMed DOI

Li Z.; Feng W.; Lin Y.; Liu X.; Fei H. Flaky CoS2 and graphene nanocomposite anode materials for sodium-ion batteries with improved performance. RSC Adv. 2016, 6, 70632–70637. 10.1039/C6RA12563H. DOI

Rahman M. M.; Ahmed J.; Asiri A. M.; Siddiquey I. A.; Hasnat M. A. Development of highly-sensitive hydrazine sensor based on facile CoS2–CNT nanocomposites. RSC Adv. 2016, 6, 90470–90479. 10.1039/C6RA08772H. DOI

Guan J. F.; Zou J.; Liu Y. P.; Jiang X. Y.; Yu J. G. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid. Ecotoxicol. Environ. Saf. 2020, 201, 11087210.1016/j.ecoenv.2020.110872. PubMed DOI

Shetti N. P.; Malode S. J.; Nayak D. S.; Reddy C. V.; Reddy K. R. Novel biosensor for efficient electrochemical detection of methdilazine using carbon nanotubes-modified electrodes. Mater. Res. Express 2019, 6, 11630810.1088/2053-1591/ab4471. DOI

Qiu J. D.; Huang J.; Liang R. P. Nanocomposite film based on graphene oxide for high performance flexible glucose biosensor. Sens. Actuators, B 2011, 160, 287–294. 10.1016/j.snb.2011.07.049. DOI

Karthick N. A.; Thangappan R.; Arivanandhan M.; Gnanamani A.; Jayavel R. A facile synthesis of ferrocene functionalized graphene oxide nanocomposite for electrochemical sensing of lead. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1021–1028. 10.1007/s10904-017-0744-0. DOI

Li G.; Zeng J.; Zhao L.; Wang Z.; Dong C.; Liang J.; Zhou Z.; Huang Y. Amperometric cholesterol biosensor based on reduction graphene oxide-chitosan-ferrocene/platinum nanoparticles modified screen-printed electrode. J. Nanopart. Res. 2019, 21, 16210.1007/s11051-019-4602-6. DOI

Anderson J. L.; Armstrong D. W.; Wei G. T. Ionic liquids in analytical chemistry. Anal. Chem. 2006, 78, 2892–2902. 10.1021/ac069394o. PubMed DOI

Sun W.; Li Y.; Duan Y.; Jiao K. Direct electrochemistry of guanosine on multi-walled carbon nanotubes modified carbon ionic liquid electrode. Electrochim. Acta 2009, 54, 4105–4110. 10.1016/j.electacta.2009.02.041. DOI

Mahmoudi-Moghaddam H.; Tajik S.; Beitollahi H. A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchem. J. 2019, 150, 10408510.1016/j.microc.2019.104085. DOI

Li Y.; Li Y.; Wang Y.; Ma G.; Liu X.; Li Y.; Soar J. Application of zeolitimimidazolate frameworks (ZIF-8)/ionic liquid composites modified nano-carbon paste electrode as sensor for electroanalytical sensing of 1-hydroxypyrene. Microchem. J. 2020, 159, 10543310.1016/j.microc.2020.105433. DOI

Kunpatee K.; Traipop S.; Chailapakul O.; Chuanuwatanakul S. Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode. Sens. Actuators, B 2020, 314, 12805910.1016/j.snb.2020.128059. DOI

Beitollahi H.; Movlaee K.; Ganjali M. R.; Norouzi P.; Hosseinzadeh R. Application of a nanostructured sensor based on graphene-and ethyl 2-(4-ferrocenyl [1,2,3] triazol-1-yl) acetate-modified carbon paste electrode for determination of methyldopa in the presence of phenylephrine and guaifenesin. Appl. Organomet. Chem. 2018, 32, e424310.1002/aoc.4243. DOI

Zhang K.; Lee T. H.; Hwan Cha J.; Jang H. W.; Shokouhimehr M.; Choi J. W. Properties of CoS2/CNT as a cathode material of rechargeable aluminum-ion batteries. Electron. Mater. Lett. 2019, 15, 727.10.1007/s13391-019-00169-0. DOI

Bard A. J.; Faulkner L. R.. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, 2001.

Galus Z.Fundamentals of Electrochemical Analysis; Ellis Horwood: New York, 1976.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...