Pro-Inflammatory and Neurotrophic Factor Responses of Cells Derived from Degenerative Human Intervertebral Discs to the Opportunistic Pathogen Cutibacterium acnes

. 2021 Feb 26 ; 22 (5) : . [epub] 20210226

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33652921

Grantová podpora
None ECM Diagnostics, Inc.

Previously, we proposed the hypothesis that similarities in the inflammatory response observed in acne vulgaris and degenerative disc disease (DDD), especially the central role of interleukin (IL)-1β, may be further evidence of the role of the anaerobic bacterium Cutibacterium (previously Propionibacterium) acnes in the underlying aetiology of disc degeneration. To investigate this, we examined the upregulation of IL-1β, and other known IL-1β-induced inflammatory markers and neurotrophic factors, from nucleus-pulposus-derived disc cells infected in vitro with C. acnes for up to 48 h. Upon infection, significant upregulation of IL-1β, alongside IL-6, IL-8, chemokine (C-C motif) ligand 3 (CCL3), chemokine (C-C motif) ligand 4 (CCL4), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), was observed with cells isolated from the degenerative discs of eight patients versus non-infected controls. Expression levels did, however, depend on gene target, multiplicity and period of infection and, notably, donor response. Pre-treatment of cells with clindamycin prior to infection significantly reduced the production of pro-inflammatory mediators. This study confirms that C. acnes can stimulate the expression of IL-1β and other host molecules previously associated with pathological changes in disc tissue, including neo-innervation. While still controversial, the role of C. acnes in DDD remains biologically credible, and its ability to cause disease likely reflects a combination of factors, particularly individualised response to infection.

Zobrazit více v PubMed

Hart L.G., Deyo R.A., Cherkin D.C. Physician office visits for low back pain. Frequency, clinical evaluation, and treatment patterns from a U.S. national survey. Spine. 1995;20:11–19. doi: 10.1097/00007632-199501000-00003. PubMed DOI

Adams M.A., Roughley P.J. What is intervertebral disc degeneration, and what causes it? Spine. 2006;31:2151–2161. doi: 10.1097/01.brs.0000231761.73859.2c. PubMed DOI

Ravindra V.M., Senglaub S.S., Rattani A., Dewan M.C., Hartl R., Bisson E., Park K.B., Shrime M.G. Degenerative lumbar spine disease: Estimating global incidence and worldwide volume. Glob. Spine J. 2018;8:784–794. doi: 10.1177/2192568218770769. PubMed DOI PMC

Wahlström J., Burström L., Nilsson T., Järvholm B. Risk factors for hospitalization due to lumbar disc disease. Spine. 2012;37:1334–1339. doi: 10.1097/BRS.0b013e31824b5464. PubMed DOI

Battie M.C., Videman T., Parent E. Lumbar disc degeneration: Epidemiology and genetic influences. Spine. 2004;29:2679–2690. doi: 10.1097/01.brs.0000146457.83240.eb. PubMed DOI

Stirling A., Worthington T., Rafiq M., Lambert P.A., Elliot T.S. Association between sciatica and Propionibacterium acnes. Lancet. 2001;357:2024–2025. doi: 10.1016/S0140-6736(00)05109-6. PubMed DOI

Coscia M., Denys G., Wack M. Propionibacterium acnes, coagulase-negative Staphylococcus, and the “biofilm-like” intervertebral disc. Spine. 2016;41:1860–1865. doi: 10.1097/BRS.0000000000001909. PubMed DOI PMC

Ohrt-Nissen S., Fritz B.G., Walbom J., Kragh K.N., Bjarnsholt T., Dahl B., Manniche C. Bacterial biofilms: A possible mechanism for chronic infection in patients with lumbar disc herniation—A prospective proof-of-concept study using fluorescence in situ hybridization. APMIS. 2018;126:440–447. doi: 10.1111/apm.12841. PubMed DOI

Aghazadeh J., Salehpour F., Ziaeii E., Javanshir N., Samadi A., Sadeghi J., Mirzaei F., Naseri Alavi S.A. Modic changes in the adjacent vertebrae due to disc material infection with Propionibacterium acnes in patients with lumbar disc herniation. Eur. Spine J. 2017;26:3129–3134. doi: 10.1007/s00586-016-4887-4. PubMed DOI

Capoor M.N., Ruzicka F., Schmitz J.E., James G.A., Machackova T., Jancalek R., Smrcka M., Lipina R., Ahmed F.S., Alamin T.F., et al. Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy. PLoS ONE. 2017;12:e0174518. PubMed PMC

Salehpour F., Aghazadeh J., Mirzaei F., Ziaeii E., Alavi S.A.N. Propionibacterium acnes infection in disc material and different antibiotic susceptibility in patients with lumbar disc herniation. Int. J. Spine Surg. 2019;13:146–152. doi: 10.14444/6019. PubMed DOI PMC

Chen Z., Zheng Y., Yuan Y., Jiao Y., Xiao J., Zhou Z., Cao P. Modic changes and disc degeneration caused by inoculation of Propionibacterium acnes inside intervertebral discs of rabbits: A pilot study. Biomed. Res. Int. 2016;2016:9612437. PubMed PMC

Shan Z., Zhang X., Li S., Yu T., Liu J., Zhao F. Propionibacterium acnes incubation in the discs can result in time-dependent modic changes: A long-term rabbit model. Spine. 2017;42:1595–1603. doi: 10.1097/BRS.0000000000002192. PubMed DOI

Zamora T., Palma J., Andia M., Garcia P., Wozniak A., Solar A., Campos M. Effect of Propionibacterium acnes (PA) injection on intervertebral disc degeneration in a rat model: Does it mimic modic changes? Orthop. Traumatol. Surg. Res. 2017;103:795–799. doi: 10.1016/j.otsr.2017.04.005. PubMed DOI

Lin Y., Tang G., Jiao Y., Yuan Y., Zheng Y., Chen Y., Xiao J., Li C., Chen Z., Cao P. Propionibacterium acnes induces intervertebral disc degeneration by promoting iNOS/NO and COX-2/PGE2 activation via the ROS-dependent NF-κB pathway. Oxid. Med. Cell Longev. 2018;2018:3692752. doi: 10.1155/2018/3692752. PubMed DOI PMC

Albert H.B., Sorensen J.S., Christensen B.S., Manniche C. Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): A double-blind randomised clinical controlled trial of efficacy. Eur. Spine J. 2013;22:697–707. doi: 10.1007/s00586-013-2675-y. PubMed DOI PMC

Palazzo C., Ferrari M., Lefevre-Colau M.M., Nguyen C., Rannou F., Poiraudeau S. Lack of effectiveness of antibiotics in chronic low back pain with Modic 1 changes. Jt. Bone Spine. 2017;84:507–508. doi: 10.1016/j.jbspin.2016.08.001. PubMed DOI

Neville B.A., Forster S.C., Lawley T.D. Commensal Koch’s postulates: Establishing causation in human microbiota research. Curr. Opin. Microbiol. 2018;42:47–52. doi: 10.1016/j.mib.2017.10.001. PubMed DOI

Freemont A.J. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology. 2009;48:5–10. doi: 10.1093/rheumatology/ken396. PubMed DOI

Wang S.Z., Rui Y.F., Lu J., Wang C. Cell and molecular biology of intervertebral disc degeneration: Current understanding and implications for potential therapeutic strategies. Cell Prolif. 2014;47:381–390. doi: 10.1111/cpr.12121. PubMed DOI PMC

Phillips K.L., Cullen K., Chiverton N., Michael A.L., Cole A.A., Breakwell L.M., Haddock G., Bunning R.A., Cross A.K., Le Maitre C.L. Potential roles of cytokines and chemokines in human intervertebral disc degeneration: Interleukin-1 is a master regulator of catabolic processes. Osteoarthr. Cartil. 2015;23:1165–1177. doi: 10.1016/j.joca.2015.02.017. PubMed DOI

Yang W., Yu X.H., Wang C., He W.S., Zhang S.J., Yan Y.G., Zhang J., Xiang Y.X., Wang W.J. Interleukin-1β in intervertebral disk degeneration. Clin. Chim. Acta. 2015;450:262–272. doi: 10.1016/j.cca.2015.08.029. PubMed DOI

Le Maitre C.L., Freemont A.J., Hoyland J.A. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res. Ther. 2005;7:R732–R745. doi: 10.1186/ar1732. PubMed DOI PMC

Sun Z., Yin Z., Liu C., Liang H., Jiang M., Tian J. IL-1β promotes ADAMTS enzyme-mediated aggrecan degradation through NF-κB in human intervertebral disc. J. Orthop. Surg. Res. 2015;10:159. doi: 10.1186/s13018-015-0296-3. PubMed DOI PMC

De Luca P., de Girolamo L., Kouroupis D., Castagnetta M., Perucca Orfei C., Coviello D., Coco S., Correa D., Brayda-Bruno M., Colombini A. Intervertebral disc and endplate cells response to IL-1β inflammatory cell priming and identification of molecular targets of tissue degeneration. Eur. Cell Mater. 2020;39:227–248. doi: 10.22203/eCM.v039a15. PubMed DOI

Wang J., Tian Y., Phillips K.L., Chiverton N., Haddock G., Bunning R.A., Cross A.K., Shapiro I.M., Le Maitre C.L., Risbud M.V. Tumor necrosis factor α- and interleukin-1β-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. Arthritis Rheum. 2013;65:832–842. doi: 10.1002/art.37819. PubMed DOI PMC

Wang Y., Mingxue C., Xin J., Zheng Z., Li J., Zhang S. The role of IL-1β and TNFα in intervertebral disc degeneration. Biomed. Pharmacother. 2020;131:110660. doi: 10.1016/j.biopha.2020.110660. PubMed DOI

Abe Y., Akeda K., An H.S., Aoki Y., Pichika R., Muehleman C., Kimura T., Masuda K. Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells. Spine. 2007;32:635–642. doi: 10.1097/01.brs.0000257556.90850.53. PubMed DOI

Purmessur D., Freemont A.J., Hoyland J.A. Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc. Arthritis Res. Ther. 2008;10:R99. doi: 10.1186/ar2487. PubMed DOI PMC

Lee J.M., Song J., Baek M., Jung H.Y., Kang H., Han I.B., Kwon Y.D., Shin D.E. Interleukin-1β induces angiogenesis and innervation in human intervertebral disc degeneration. J. Orthop. Res. 2011;29:265–269. doi: 10.1002/jor.21210. PubMed DOI

Gruber H.E., Hoelscher G.L., Bethea S., Hanley E.N., Jr. Interleukin 1β upregulates brain-derived neurotrophic factor, neurotrophin 3 and neuropilin 2 gene expression and NGF production in annulus cells. Biotech. Histochem. 2012;87:506–511. doi: 10.3109/10520295.2012.703692. PubMed DOI

Binch A.L., Cole A.A., Breakwell L.M., Michael A.L., Chiverton N., Cross A.K., Le Maitre C.L. Expression and regulation of neurotrophic and angiogenic factors during human intervertebral disc degeneration. Arthritis Res. Ther. 2014;16:416. doi: 10.1186/s13075-014-0416-1. PubMed DOI PMC

McLaughlin J., Watterson S., Layton A.M., Bjourson A.J., Barnard E., McDowell A. Propionibacterium acnes and acne vulgaris: New insights from the integration of population genetic, multi-omic, biochemical and host-microbe studies. Microorganisms. 2019;7:128. doi: 10.3390/microorganisms7050128. PubMed DOI PMC

Kistowska M., Gehrke S., Jankovic D., Kerl K., Fettelschoss A., Feldmeyer L., Fenini G., Kolios A., Navarini A., Ganceviciene R., et al. IL-1β drives inflammatory responses to Propionibacterium acnes in vitro and in vivo. J. Invest. Dermatol. 2014;134:677–685. doi: 10.1038/jid.2013.438. PubMed DOI

Risbud M.V., Shapiro I.M. Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat. Rev. Rheumatol. 2014;10:44–56. doi: 10.1038/nrrheum.2013.160. PubMed DOI PMC

Shamji M., Setton L.A., Jarvis W., So S., Chen J., Jing L., Bullock R., Isaacs R.E., Brown C., Richardson W.J. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum. 2010;62:1974–1982. PubMed PMC

Slaby O., McDowell A., Brüggemann H., Raz A., Demir-Deviren S., Freemont T., Lambert P., Capoor M.N. Is IL-1β further evidence for the role of Propionibacterium acnes in degenerative disc disease? Lessons from the study of the inflammatory skin condition acne vulgaris. Front. Cell. Infect. Microbiol. 2018;8:272. doi: 10.3389/fcimb.2018.00272. PubMed DOI PMC

Schmid B., Hausmann O., Hitzl W., Achermann Y., Wuertz-Kozak K. The role of Cutibacterium acnes in intervertebral disc inflammation. Biomedicines. 2020;8:186. doi: 10.3390/biomedicines8070186. PubMed DOI PMC

Krock E., Currie J.B., Weber M.H., Ouellet J.A., Stone L.S., Rosenzweig D.H., Haglund L. Nerve growth factor is regulated by Toll-Like Receptor 2 in human intervertebral discs. J. Biol. Chem. 2016;291:3541–3551. doi: 10.1074/jbc.M115.675900. PubMed DOI PMC

Krock E., Rosenzweig D.H., Currie J.B., Bisson D.G., Ouellet J.A., Haglund L. Toll-like receptor activation induces degeneration of human intervertebral discs. Sci. Rep. 2017;7:17184. doi: 10.1038/s41598-017-17472-1. PubMed DOI PMC

Shah B.S., Burt K.G., Jacobsen T., Fernandes T.D., Alipui D.O., Weber K.T., Levine M., Chavan S.S., Yang H., Tracey K.J., et al. High mobility group box-1 induces pro-inflammatory signaling in human nucleus pulposus cells via toll-like receptor 4-dependent pathway. J. Orthop. Res. 2019;37:220–231. doi: 10.1002/jor.24154. PubMed DOI PMC

Jugeau S., Tenaud I., Knol A.C., Jarrousse V., Quereux G., Khammari A., Dreno B. Induction of toll-like receptors by Propionibacterium acnes. Br. J. Dermatol. 2005;153:1105–1113. doi: 10.1111/j.1365-2133.2005.06933.x. PubMed DOI

Cheon D., Kim J., Jeon D., Shin H.C., Kim Y. Target proteins of Phloretin for its anti-inflammatory and antibacterial activities against Propionibacterium acnes-induced skin infection. Molecules. 2019;24:1319. doi: 10.3390/molecules24071319. PubMed DOI PMC

Georgy M.M., Vaida F., Stern M., Murphy K. Association between type 1 Modic changes and Propionibacterium acnes infection in the cervical spine: An observational study. AJNR Am. J. Neuroradiol. 2018;39:1764–1767. doi: 10.3174/ajnr.A5741. PubMed DOI PMC

Dudli S., Miller S., Demir-Deviren S., Lotz J.C. Inflammatory response of disc cells against Propionibacterium acnes depends on the presence of lumbar Modic changes. Eur. Spine J. 2018;27:1013–1020. doi: 10.1007/s00586-017-5291-4. PubMed DOI PMC

Tanabe T., Ishige I., Suzuki Y., Aita Y., Furukawa A., Ishige Y., Uchida K., Suzuki T., Takemura T., Ikushima S., et al. Sarcoidosis and NOD1 variation with impaired recognition of intracellular Propionibacterium acnes. Biochim. Biophys. Acta. 2006;1762:794–801. doi: 10.1016/j.bbadis.2006.07.006. PubMed DOI

Fassi Fehri L., Mak T.N., Laube B., Brinkmann V., Ogilvie L.A., Mollenkopf H., Lein M., Schmidt T., Meyer T.F., Brüggemann H. Prevalence of Propionibacterium acnes in diseased prostates and its inflammatory and transforming activity on prostate epithelial cells. Int. J. Med. Microbiol. 2011;301:69–78. doi: 10.1016/j.ijmm.2010.08.014. PubMed DOI

Nakamura T., Furukawa A., Uchida K., Ogawa T., Tamura T., Sakonishi D., Wada Y., Suzuki Y., Ishige Y., Minami J., et al. Autophagy induced by intracellular infection of Propionibacterium acnes. PLoS ONE. 2016;11:e0156298. doi: 10.1371/journal.pone.0156298. PubMed DOI PMC

Aubin G.G., Baud’huin M., Lavigne J.P., Brion R., Gouin F., Lepelletier D., Jacqueline C., Heymann D., Asehnoune K., Corvec S. Interaction of Cutibacterium (formerly Propionibacterium) acnes with bone cells: A step toward understanding bone and joint infection development. Sci. Rep. 2017;7:42918. doi: 10.1038/srep42918. PubMed DOI PMC

Jones P., Gardner L., Menage J., Williams G.T., Roberts S. Intervertebral disc cells as competent phagocytes in vitro: Implications for cell death in disc degeneration. Arthritis Res. Ther. 2008;10:R86. doi: 10.1186/ar2466. PubMed DOI PMC

Lin Y., Cong H., Liu K., Jiao Y., Yuan Y., Tang G., Chen Y., Zheng Y., Xiao J., Li C., et al. Microbicidal phagocytosis of nucleus pulposus cells against Staphylococcus aureus via the TLR2/MAPKs signaling pathway. Front. Immunol. 2019;10:1132. doi: 10.3389/fimmu.2019.01132. PubMed DOI PMC

Fischer N., Mak T.N., Shinohara D.B., Sfanos K.S., Meyer T.F., Brüggemann H. Deciphering the intracellular fate of Propionibacterium acnes in macrophages. Biomed. Res. Int. 2013;2013:603046. doi: 10.1155/2013/603046. PubMed DOI PMC

Negi M., Takemura T., Guzman J., Uchida K., Furukawa A., Suzuki Y., Iida T., Ishige I., Minami J., Yamada T., et al. Localization of Propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium. Mod. Pathol. 2012;25:1284–1297. doi: 10.1038/modpathol.2012.80. PubMed DOI PMC

Bae Y., Ito T., Iida T., Uchida K., Sekine M., Nakajima Y., Kumagai J., Yokoyama T., Kawachi H., Akashi T., et al. Intracellular Propionibacterium acnes infection in glandular epithelium and stromal macrophages of the prostate with or without cancer. PLoS ONE. 2014;9:e90324. doi: 10.1371/journal.pone.0090324. PubMed DOI PMC

Burke J.G., Watson R.W., McCormack D., Dowling F.E., Walsh M.G., Fitzpatrick J.M. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J. Bone Jt. Surg. Br. 2002;84:196–201. doi: 10.1302/0301-620X.84B2.0840196. PubMed DOI

Zhang J., Li Z., Chen F., Liu H., Wang H., Li X., Liu X., Wang J., Zheng Z. TGF-β1 suppresses CCL3/4 expression through the ERK signaling pathway and inhibits intervertebral disc degeneration and inflammation-related pain in a rat model. Exp. Mol. Med. 2017;49:e379. doi: 10.1038/emm.2017.136. PubMed DOI PMC

Li Z., Wang X., Pan H., Yang H., Li X., Zhang K., Wang H., Zheng Z., Liu H., Wang J. Resistin promotes CCL4 expression through toll-like receptor-4 and activation of the p38-MAPK and NF-κB signaling pathways: Implications for intervertebral disc degeneration. Osteoarthr. Cartil. 2017;25:341–350. doi: 10.1016/j.joca.2016.10.002. PubMed DOI

Pedersen L.M., Schistad E., Jacobsen L.M., Røe C., Gjerstad J. Serum levels of the pro-inflammatory interleukins 6 (IL-6) and -8 (IL-8) in patients with lumbar radicular pain due to disc herniation: A 12-month prospective study. Brain Behav. Immun. 2015;46:132–136. doi: 10.1016/j.bbi.2015.01.008. PubMed DOI

Zhang Y.L., Li B., Zhou Z.H. A cross-sectional study: Serum CCL3/MIP-1α levels may reflect lumbar intervertebral disk degeneration in Han Chinese people. J. Pain Res. 2018;11:497–503. doi: 10.2147/JPR.S152349. PubMed DOI PMC

Richardson S.M., Purmessur D., Baird P., Probyn B., Freemont A.J., Hoyland J.A. Degenerate human nucleus pulposus cells promote neurite outgrowth in neural cells. PLoS ONE. 2012;7:e47735. doi: 10.1371/journal.pone.0047735. PubMed DOI PMC

Jiao Y., Yuan Y., Lin Y., Zhou Z., Zheng Y., Wu W., Tang G., Chen Y., Xiao J., Li C., et al. Propionibacterium acnes induces discogenic low back pain via stimulating nucleus pulposus cells to secrete pro-algesic factor of IL-8/CINC-1 through TLR2-NF-κB p65 pathway. J. Mol. Med. 2019;97:25–35. doi: 10.1007/s00109-018-1712-z. PubMed DOI

Capoor M.N., Lochman J., McDowell A., Schmitz J.E., Solansky M., Zapletalova M., Alamin T.F., Coscia M.F., Garfin S.R., Jancalek R., et al. Intervertebral disc penetration by antibiotics used prophylactically in spinal surgery: Implications for the current standards and treatment of disc infections. Eur. Spine J. 2019;28:783–791. doi: 10.1007/s00586-018-5838-z. PubMed DOI

Zhang L., Wang J.C., Feng X.M., Cai W.H., Yang J.D., Zhang N. Antibiotic penetration into rabbit nucleus pulposus with discitis. Eur. J. Orthop. Surg. Traumatol. 2014;24:453–458. doi: 10.1007/s00590-013-1317-8. PubMed DOI

Patrick S., McDowell A., Lee A., Frau A., Martin U., Gardner E., McLorinan G., Eames N. Antisepsis of the skin before spinal surgery with povidone iodine-alcohol followed by chlorhexidine gluconate-alcohol versus povidone iodine-alcohol applied twice for the prevention of contamination of the wound by bacteria: A randomised controlled trial. Bone Jt. J. 2017;99-B:1354–1365. doi: 10.1302/0301-620X.99B10.BJJ-2017-0291.R1. PubMed DOI

Eick S., Pfister W., Fiedler D., Straube E. Clindamycin promotes phagocytosis and intracellular killing of periodontopathogenic bacteria by crevicular granulocytes: An in vitro study. J. Antimicrob. Chemother. 2000;46:583–588. doi: 10.1093/jac/46.4.583. PubMed DOI

Rodrigues F.F., Morais M.I., Melo I.S.F., Augusto P.S.A., Dutra M.M.G.B., Costa S.O.A.M., Costa F.C., Goulart F.A., Braga A.V., Coelho M.M., et al. Clindamycin inhibits nociceptive response by reducing tumor necrosis factor-α and CXCL-1 production and activating opioidergic mechanisms. Inflammopharmacology. 2020;28:551–561. doi: 10.1007/s10787-019-00670-w. PubMed DOI

Feuillolay C., Pecastaings S., Le Gac C., Fiorini-Puybaret C., Luc J., Joulia P., Roques C. A Myrtus communis extract enriched in myrtucummulones and ursolic acid reduces resistance of Propionibacterium acnes biofilms to antibiotics used in acne vulgaris. Phytomedicine. 2016;23:307–315. doi: 10.1016/j.phymed.2015.11.016. PubMed DOI

McDowell A. Over a decade of recA and tly gene sequence typing of the skin bacterium Propionibacterium acnes: What have we learnt? Microorganisms. 2017;6:1. doi: 10.3390/microorganisms6010001. PubMed DOI PMC

Bataille V., Snieder H., MacGregor A.J., Sasieni P., Spector T.D. The influence of genetics and environmental factors in the pathogenesis of acne: A twin study of acne in women. J. Investig. Dermatol. 2002;119:1317–1322. doi: 10.1046/j.1523-1747.2002.19621.x. PubMed DOI

Szabó K., Kemény L. Studying the genetic predisposing factors in the pathogenesis of acne vulgaris. Hum. Immunol. 2011;72:766–773. doi: 10.1016/j.humimm.2011.05.012. PubMed DOI

Pfirrmann C.W., Metzdorf A., Zanetti M., Hodler J., Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873–1878. doi: 10.1097/00007632-200109010-00011. PubMed DOI

Quero L., Klawitter M., Schmaus A., Rothley M., Sleeman J., Tiaden A.N., Klasen J., Boos N., Hottiger M.O., Wuertz K., et al. Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signalling pathways. Arthritis Res. Ther. 2013;15:R94. doi: 10.1186/ar4274. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...