An Endoplasmic Reticulum Specific Pro-amplifier of Reactive Oxygen Species in Cancer Cells
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33656236
PubMed Central
PMC8251580
DOI
10.1002/anie.202100054
Knihovny.cz E-resources
- Keywords
- aminoferrocene, cancer, endoplasmic reticulum, prodrugs, reactive oxygen species,
- MeSH
- Endoplasmic Reticulum drug effects metabolism MeSH
- Neoplasms, Experimental drug therapy metabolism MeSH
- Humans MeSH
- Lymphoma drug therapy metabolism MeSH
- Molecular Structure MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Prodrugs chemistry pharmacology MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Reactive Oxygen Species metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Prodrugs MeSH
- Antineoplastic Agents MeSH
- Reactive Oxygen Species MeSH
The folding and export of proteins and hydrolysis of unfolded proteins are disbalanced in the endoplasmic reticulum (ER) of cancer cells, leading to so-called ER stress. Agents further augmenting this effect are used as anticancer drugs including clinically approved proteasome inhibitors bortezomib and carfilzomib. However, these drugs can affect normal cells, which also rely strongly on ER functions, leading, for example, to accumulation of reactive oxygen species (ROS). To address this problem, we have developed ER-targeted prodrugs activated only in cancer cells in the presence of elevated ROS amounts. These compounds are conjugates of cholic acid with N-alkylaminoferrocene-based prodrugs. We confirmed their accumulation in the ER of cancer cells, their anticancer efficacy, and cancer cell specificity. These prodrugs induce ER stress, attenuate mitochondrial membrane potential, and generate mitochondrial ROS leading to cell death via necrosis. We also demonstrated that the new prodrugs are activated in vivo in Nemeth-Kellner lymphoma (NK/Ly) murine model.
Danylo Halytsky Lviv National Medical University Pekarska str 69 79010 Lviv Ukraine
Hematology Department 1st Affiliated Hospital of Soochow University Suzhou China
Institute of Experimental Botany AS CR Prague Czech Republic
Takeda Pharma Vertrieb GmbH and Co KG Jägerstr 27 1017 Berlin Germany
See more in PubMed
ECIS—European Cancer Information System: from https://ecis.jrc.ec.europa.eu, accessed on 25/08/2020© European Union, 2020.
Schirrmacher V., Int. J. Oncol. 2019, 54, 407–419. PubMed PMC
Vu T., Claret F. X., Front. Oncol. 2012, 2, 62. PubMed PMC
Koppenol W. H., Bounds P. L., Dang C. V., Nat. Rev. Cancer 2011, 11, 325–337; PubMed
Warburg O., Science 1956, 123, 309–314. PubMed
Antunes F., Cadenas R., FEBS Lett. 2000, 475, 121–126. PubMed
Szatrowski T. P., Nathan C. F., Cancer Res. 1991, 51, 794–798; PubMed
Halliwell B., Biochem. J. 2007, 401, 1–11. PubMed
King A. P., Wilson J. J., Chem. Soc. Rev. 2020, 49, 8113–8136. PubMed
Siwecka N., Rozpędek W., Pytel D., Wawrzynkiewicz A., Dziki A., Dziki Ł., Diehl J. A., Majsterek I., Int. J. Mol. Sci. 2019, 20, 4354. PubMed PMC
Daum S., Chekhun V., Todor I., Lukianova N., Shvets Y., Sellner L., Putzker K., Lewis J., Zenz T., Graaf I., Groothuis G., Casini A., Zozulia O., Hampel F., Mokhir A., J. Med. Chem. 2015, 58, 2015–2024. PubMed
Peter S., Aderibigbe B. A., Molecules 2019, 24, 3604; PubMed PMC
Patra M., Gasser G., Nat. Rev. Chem. 2017, 1, 0066.
Hwang C., Sinskey A. J., Lodish H. F., Science 1992, 257, 1496–1502. PubMed
Daum S., Babiy S., Konovalova H., Hofer W., Shtemenko A., Shtemenko N., Janko C., Alexiou C., Mokhir A., J. Inorg. Biochem. 2018, 178, 9–17. PubMed
Daum S., Reshetnikov V., Sisa M., Dumych T., Lootsik M. D., Bilyy R., Bila E., Janko C., Alexiou A., Herrmann M., Sellner L., Mokhir A., Angew. Chem. Int. Ed. 2017, 56, 15545–15549; PubMed
Angew. Chem. 2017, 129, 15751–15755.
Reshetnikov V., Daum S., Janko C., Karawacka W., Tietze R., Alexiou C., Paryzhak S., Dumych T., Bilyy R., Tripal P., Schmid B., Palmisano R., Mokhir A., Angew. Chem. Int. Ed. 2018, 57, 11943–11946; PubMed
Angew. Chem. 2018, 130, 12119–12122;
Reshetnikov V., Özkan H. G., Daum S., Janko C., Alexiou C., Sauer C., Heinrich M. R., Mokhir A., Molecules 2020, 25, 2545. PubMed PMC
Fus F., Yang Y., Lee H. Z. S., Top S., Carriere M., Bouron A., Pacureanu A., Cesar da Silva J., Salmain M., Vessières A., Cloetens P., Jaouen G., Bohic S., Angew. Chem. Int. Ed. 2019, 58, 3461–3465; PubMed
Angew. Chem. 2019, 131, 3499–3503.
Chen D., Cui Q. C., Yang H., Dau Q. P., Cancer Res. 2006, 66, 10425–10433; PubMed
Butcher K., Kannappan V., Kilari R. S., Morris M. R., McConville C., Armesilla A. L., Wang W., BMC Cancer 2018, 18, 753. PubMed PMC
Yang Q., Yao Y., Li K., Jiao L., Zhu J., Ni C., Li M., Dou Q. P., Yang H., Curr. Pharm. Des. 2019, 25, 3248–3256. PubMed
Ekinci E., Rohondia S., Khan R., Dou Q. P., Recent Pat. Anti-Cancer Drug Discovery 2019, 14, 113–132. PubMed
Gao P., Pan W., Li N., Tang B., Chem. Sci. 2019, 10, 6035–6071. PubMed PMC
Daum S., Toms J., Reshetnikov V., Özkan H. G., Hampel F., Maschauer S., Hakimioun A., Beierlein F., Sellner L., Schmitt M., Prante O., Mokhir A., Bioconjugate Chem. 2019, 30, 1077–1086. PubMed
Sun S. Y., Cancer Biol. Ther. 2010, 9, 109–110. PubMed PMC
Oyadomari S., Mori M., Cell Death Differ. 2004, 11, 381–389. PubMed