Guinea fowl (Numida meleagris) eggs and free-range housing: a convenient alternative to laying hens' eggs in terms of food safety?

. 2021 Apr ; 100 (4) : 101006. [epub] 20210117

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33662664
Odkazy

PubMed 33662664
PubMed Central PMC7930637
DOI 10.1016/j.psj.2021.01.029
PII: S0032-5791(21)00040-7
Knihovny.cz E-zdroje

The aim of this study was to evaluate the impact of the genotype (guinea fowl, native breed Leghorn, and commercial hybrid hens), storage time (0, 14, 28 d) and storage temperature (fresh, 5, 20°C) on eggshell quality traits and microbiological contamination of eggshell, eggshell membranes, and albumen. A total of 150 hens (50 hens per genotype-divided into 2 equal groups because of the results replication) were used. There were 150 eggs (50 per genotype) used for microbial analysis and 600 eggs used for the analysis of eggshell quality. The effects of genotype, storage time, and storage temperature were observed. Moreover, interactions between these factors were calculated. The significant effect of genotype (P = 0.0001) was found in egg weight, in all observed parameters of eggshell quality (proportion, thickness, strength, surface, and index), eggshell contamination of Escherichia coli (EC) and total number of micro-organisms (TNM), penetration of TNM into eggshell membranes (P = 0.0014), and penetration of TNM into albumen (P = 0.0019). Storage time significantly affected egg weight and all parameters of eggshell quality except the eggshell strength and index. It also significantly affected count of Enterococcus (ENT) on eggshell, TNM in eggshell membranes and TNM in albumen. Storage temperature significantly influenced egg weight (P = 0.0001) and all parameters but eggshell thickness and surface. Regarding the microbial contamination, storage temperature significantly affected a count of ENT on shell, TNM in shell membranes, and TNM in albumen. Concerning significant interactions, the interaction among genotype and storage time was found significant (P = 0.0148). Fresh and 28-day-old commercial hybrid eggs were the most contaminated, whereas guinea fowl eggs (fresh and 14 d old) and Leghorn hen eggs (fresh, 14, 28 d old) had the lowest level of contamination by EC. When looking for an alternative to laying hens, guinea fowls should be taken into consideration due to their higher resistance to diseases, ability of adaptation to different environmental conditions, and especially in terms of eggshell quality and therefore egg safety.

Zobrazit více v PubMed

Ahmed A.M.H., Rodriguez-Navarro A.B., Vidal M.L., Gautron J., García-Ruiz J.M., Nys Dr Y. Changes in eggshell mechanical properties, crystallographic texture and in matrix proteins induced by moult in hens. Br. Poult. Sci. 2005;46:268–279. PubMed

Baeza E., Juin H., Rebours G., Constantin P., Marche G., Leterrier C. Effect of genotype, sex and rearing temperature on carcase and meat quality of Guinea fowl. Br. Poult. Sci. 2001;42:470–476. PubMed

Bain M.M., McDade K., Burchmore R., Law A., Wilson P.W., Schmutz M., Preisinger R., Dunn I.C. Enhancing the egg's natural defence against bacterial penetration by increasing cuticle deposition. Anim. Gen. 2013;44:661–668. PubMed

Bílková B., Świderská Z., Zita L., Laloë D., Charles M., Beneš V., Stopka P., Vinkler M. Domestic fowl breed Variation in egg white protein Expression: application of proteomics and Transcriptomics. J. Agricult. Food Chem. 2018;66:11854–11863. PubMed

Board R.G. The course of microbial infection of the hen's egg. J. Appl. Bacteriol. 1966;29:319–341. PubMed

Board R.G., Ayres J.C. Influence of iron on the course of bacterial infection of the hen's egg. Appl. Microbiol. 1965;13:358–364. PubMed PMC

Brandl H.B., Dongen V., W F., Darolová A., Krištofík J., Majtan J., Hoi H. Composition of bacterial assemblages in different components of reed warbler nests and a possible role of egg incubation in pathogen regulation. PLoS One. 2014;9:114861. PubMed PMC

Campo J.L., Prieto M.T., Davila S.G. Effects of housing system and cold stress on heterophil-to-lymphocyte ratio, fluctuating asymmetry, and tonic immobility duration of chickens. Poult. Sci. 2008;87:621–626. PubMed

Castellini C., Mugnai C., Moscati L., Mattioli S., Guarino Amato M., Cartoni Mancinelli A., Dal Bosco A. Adaptation to organic rearing system of eight different chicken genotypes: behaviour, welfare and performance. It. J. Anim. Sci. 2016;15:37–46.

Croxen M.A., Law R.J., Scholz R., Keeney K.M., Wlodarska M., Finlay B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013;26:822–880. PubMed PMC

Dahouda M., Toleba S.S., Youssao A.K.I., Kogui S.B., Aboubakari S.Y., Hornick J.L. Guinea fowl rearing congenotypes and flock composition under traditional management in Borgu Department. Benin. Fam. Poult. 2007;17:3–14.

D’Alba L., Shawkey M.D. Mechanisms of antimicrobial defense in avian eggs. J. Ornithol. 2015;156:399–408.

Decuypere E., Tona K., Bruggeman V., Bamelis F. The day-old chick: a crucial hinge between breeders and broilers. Worlds. Poult. Sci. J. 2001;57:127–138.

Demas G., Nelson R. Ecoimmunology. Oxford University Press Oxford; United Kingdom: 2012. pp. 3–12.

De Reu K., Grijspeerdt K., Heyndrickx M., Uyttendaele M., Debevere J., Herman L. Bacterial eggshell con-tamination in the egg collection chains of different housing systems for laying hens. Br. Poult. Sci. 2006;47:163–172. PubMed

De Reu K., Heyndrickx M., Grijspeerdt K., Rodenburg T.B., Tuyttens F., Uyttendaele M., Debevere J., Herman L. 2007. Estimation of the Vertical and Horizontal Bacterial Infection of Hen’s Table Eggs. Proc. XVIII European Symposium on the Quality of Poultry Meat and XII European Symposium on the Quality of Eggs and Egg Products, Czech Branch of WPSA, Prague, Czech Republic.

Dikmen B.Y., İpek A., Şahan Ü P.M., Sözcü A. Egg production and welfare of laying hens kept in different housing systems (conventional, enriched cage, and free range) Poult. Sci. 2016;95:1564–1572. PubMed

Gardini F., Martuscelli M., Caruso M.C., Galgano F., Crudele M.A., Favati F., Guerzoni M.E., Suzzi G. Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Inter. J. Food Microbiol. 2001;64:105–117. PubMed

Gautron, J., M. T. Hincke, J. M. Garcia-Ruiz, J., Dominguez, and Y. Nys. 1997. Ovotransferrin and lysozyme are constit-uent in eggshell matrix. Pages 66–75 in Eggs and Egg Products Quality. J. Kijowski and J. Pikul, eds. ProceedingsVII European Symposium, Pozhaus, Poland.

Henry N.G., Ingraham J.L., Marr A.G. Damage and derepression in Escherichia coli resulting from growth at low temperatures. J. Bacter. 1962;84:331–339. PubMed PMC

Hincke M.T., Gautron J., Panheleux M., Garcia-Ruiz J., McKee M.D., Nys Y. Identification and localization of lysozyme as a component of eggshell membraness and eggshell matrix. Matrix Biol. 2000;19:443–453. PubMed

Holt P.S., Davies R.H., Dewulf J., Gast R.K., Huwe J.K., Jones D.R., Waltman K.R., Willian K.R. The impact of different housing systems on egg safety and quality. Poult. Sci. 2011;90:251–262. PubMed

Horrocks N.P., Hine K., Hegemann A., Ndithia H.K., Shobrak M., Ostrowski S., Williams J.B., Matson K.D., Tieleman B.I. Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection? Front. Zool. 2014;11:49. PubMed PMC

Huang L., Hwang A., Phillips J. Effect of temperature on microbial growth rate–mathematical analysis: the Arrhenius and Eyring–Polanyi connections. J. Food Sci. 2011;76:E553–E560. PubMed

Huneau-Salaün A., Michel V., Huonnic D., Balaine L., Le Bouquin S. Factors influencing bacterial eggshell contamination in conventional cages, furnished cages and free-range systems for laying hens under commercial conditions. Br. Poult. Sci. 2010;51:163–169. PubMed

Jones D.R., Anderson K.E. Housing system and laying hen genotype impacts on egg microbiology. Poult. Sci. 2013;92:2221–2225. PubMed

Kgwatalala P.M., Bolebano L., Nsoso S.J. Egg quality characteristics of different varieties of domesticated helmeted Guinea fowl. Inter. J. Poult. Sci. 2013;12:245–250.

Kibala L., Rozempolska-Rucinska I., Kasperek K., Zieba G., Lukaszewicz M. Ultrasonic eggshell thickness measurement for selection of layers. Poult. Sci. 2015;94:2360–2363. PubMed

Kraus A., Zita L. The effect of age and genotype on quality of eggs in Brown egg-laying hybrids. Acta. Univ. Agric. Silvic. Mendel. Brun. 2019;67:407–414.

Kraus A., Zita L., Krunt O. The effect of different housing system on quality parameters of eggs in relationship to the age in brown egg-laying hens. Bulg. J. Agric. Sci. 2019;25:1246–1253.

Lee M.H., Cho E.J., Choi E.S., Sohn S.H. The effect of storage period and temperature on egg quality in commercial eggs. Kor. J. Poult. Sci. 2016;43:31–38.

Leenstra F., Maurer V., Galea F., Bestman M., Amsler-Kepalaite Z., Visscher J., Vermeij I., van Krimpen M. Laying hen performance in different production systems; why do they differ and how to close the gap? Results of discussions with groups of farmers in The Netherlands, Switzerland and France, benchmarking and model calculations. Europ. Poult. Sci. 2014;78:1–10.

Le Roy N., Combes-Soia L., Brionne A., Labas V., Rodriguez-Navarro A.B., Hincke M.T., Nys Y., Gautron J. Guinea fowl eggshell quantitative proteomics yield new findings related to its unique structural characteristics and superior mechanical properties. J. Proteom. 2019;209:103511. PubMed

Lewko L., Gornowicz E. Egg albumen quality as affected by bird origin. J. Cent. Europ. Agric. 2009;10:455–463.

Madigan M.T., Martinko J.M., Dunlap P.V., Clark D.P. Benjamin Cummings; New York, NY, 149-152: 2005. Brockbiology of Microorganisms.

Miao Z.H., Glatz P.C., Ru Y.J. Free-range poultry production-A review. Asian Australas. J. Anim. Sci. 2005;18:113–132.

Mench J.A., Sumner D.A., Rosen-Molina J.T. Sustainability of egg production in the United States - the policy and market context. Poult. Sci. 2011;90:229–240. PubMed

Moreki J.C.M., Radikara M.V. Challenges to Commercialization of Guinea fowl in Africa. Inter. J. Sci. Res. 2013;2:436–440.

Panheleux M., Kalin O., Gautron J., Nys Y. Features of eggshell formation in Guinea fowl: kinetics of shell deposition, uterine protein secretion and uterine histology. Br. Poult. Sci. 1999;40:632–643. PubMed

Parisi M.A., Northcutt J.K., Smith D.P., Steinberg E.L., Dawson P.L. Microbiological contamination of shell eggs produced in conventional and free-range housing systems. Food Control. 2015;47:161–165.

Pesavento G., Calonico C., Runfola M., Nostro A.L. Free-range and organic farming: eggshell contamination by mesophilic bacteria and unusual pathogens. J. Appl. Poult. Res. 2017;26:509–517.

Petersen J., Tyler C. The strength of Guinea fowl (Numida meleagris) egg shells. Brit. Poult. Sci. 1966;7:291–296.

Rigby D., Cáceres D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 2001;68:21–40.

Samli H.E., Agma A., Senkoylu N. Effects of storage time and temperature on egg quality in old laying hens. J. Appl. Poult. Res. 2005;14:548–553.

SAS . SAS Inst. Inc.; Cary, NC: 2011. SAS/STAT User's Guide (Release 9.4)

Scott T.A., Silversides F.G. The effect of storage and strain of hen on egg quality. Poult. Sci. 2000;79:1725–1729. PubMed

Sert D., Aygun A., Demir M.K. Effects of ultrasonic treatment and storage temperature on egg quality. Poult. Sci. 2011;90:869–875. PubMed

Song K.T., Choi S.H., Oh H.R. A comparison of egg quality of pheasant, chukar, quail and Guinea fowl. Asian. Australas. J. Anim. Sci. 2000;13:986–990.

Shawkey M.D., Firestone M.K., Brodie E.L., Beissinger S.R. Avianincubation inhibits growth and diversification of bacterialassemblages on eggs. PLoS One. 2009;4:e4522. PubMed PMC

Siderer Y., Maquet A., Anklam E. Need for research to support consumer confidence in the growing organic food market. Trends Food Sci. Technol. 2005;16:332–343.

Silversides F.G., Korver D.R., Budgell K.L. Effect of genotype of layer and age at photostimulation on egg production, egg quality, and bone strength. Poult. Sci. 2006;85:1136–1144. PubMed

Theron H., Venter P., Lues J.F.R. Bacterial growth on chicken eggs in various storage environments. Food Res. Int. 2003;36:969–975.

Tyler C., Geake F.H. Studies on shells. XV.Critical appraisal of various methods of assessingshell thickness. J. Sci. Food Agri. 1961;12:281–289.

Vlčková J., Tůmová E., Ketta M., Englmaierová M., Chodová D. Effect of housing system and age of laying hens on eggshell quality, microbial contamination, and penetration of microorganisms into eggs. Czech J. Anim. Sci. 2018;63:51–60.

Wellman-Labadie O., Picman J., Hincke M. Antimicrobial activity of the Anseriform outer eggshell and cuticle. Comp. Biochem. Phys. B. Biochem. Mol. Biol. 2008;149:640–649. PubMed

Wellman-Labadie O., Picman J., Hincke M.T. Comparative antibacterial activity of avian egg white protein extracts. Br. Poult. Sci. 2008;49:125–132. PubMed

Williams A., Audsley E., Sandars D. 2006. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities: Defra project report IS0205. Accessed Feb. 2021. http://randd. defra. gov. uk/Default. aspx.

Yamak U.S., Sarica M., Boz M.A., Ucar A. Effect of production system (barn and free range) and slaughter age on some production traits of Guinea fowl. Poult. Sci. 2018;97:47–53. PubMed

Zhang J., Wang Y., Zhang C., Xiong M., Rajput S.A., Liu Y., Qi D. The differences of gonadal hormones and uterine transcriptome during shell calcification of hens laying hard or weak-shelled eggs. BMC Genomics. 2019;20:1–12. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...