Approaches for estimating benefits and costs of interventions in plant biosecurity across invasion phases
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33665918
PubMed Central
PMC8365635
DOI
10.1002/eap.2319
Knihovny.cz E-zdroje
- Klíčová slova
- benefit-cost analysis, border biosecurity, cost accounting, general equilibrium modeling, invasive alien species, partial equilibrium modeling, phytosanitary measures,
- MeSH
- analýza nákladů a výnosů MeSH
- ekonomické modely * MeSH
- pravděpodobnost MeSH
- řízení rizik MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Nonnative plant pests cause billions of dollars in damages. It is critical to prevent or reduce these losses by intervening at various stages of the invasion process, including pathway risk management (to prevent pest arrival), surveillance and eradication (to counter establishment), and management of established pests (to limit damages). Quantifying benefits and costs of these interventions is important to justify and prioritize investments and to inform biosecurity policy. However, approaches for these estimations differ in (1) the assumed relationship between supply, demand, and prices, and (2) the ability to assess different types of direct and indirect costs at invasion stages, for a given arrival or establishment probability. Here we review economic approaches available to estimate benefits and costs of biosecurity interventions to inform the appropriate selection of approaches. In doing so, we complement previous studies and reviews on estimates of damages from invasive species by considering the influence of economic and methodological assumptions. Cost accounting is suitable for rapid decisions, specific impacts, and simple methodological assumptions but fails to account for feedbacks, such as market adjustments, and may overestimate long-term economic impacts. Partial equilibrium models consider changes in consumer and producer surplus due to pest impacts or interventions and can account for feedbacks in affected sectors but require specialized economic models, comprehensive data sets, and estimates of commodity supply and demand curves. More intensive computable general equilibrium models can account for feedbacks across entire economies, including capital and labor, and linkages among these. The two major considerations in choosing an approach are (1) the goals of the analysis (e.g., consideration of a single pest or intervention with a limited range of impacts vs. multiple interventions, pests or sectors), and (2) the resources available for analysis such as knowledge, budget and time.
AgResearch Private Bag 4749 Christchurch 8140 New Zealand
AgResearch Ruakura 10 Bisley Road Hamilton New Zealand
Better Border Biosecurity Private Bag 4704 Christchurch 8140 New Zealand
Manaaki Whenua Landcare Research Private Bag 92170 Auckland 1142 New Zealand
Market Economics Ltd Digital Basecamp 1132 Hinemoa Street Rotorua 3010 New Zealand
Ministry for Primary Industries 147 Lambton Quay Wellington 6011 New Zealand
NZ Institute for Plant and Food Research Private Bag 4704 Christchurch 8140 New Zealand
Resources for the Future 1616 P Street NW Washington D C 20036 USA
School of Ecosystem and Forest Sciences University of Melbourne Melbourne Victoria 3010 Australia
Scion P O Box 29237 Christchurch 8540 New Zealand
Swiss Federal Research Institute WSL Zürcherstrasse 111 Birmensdorf 8903 Switzerland
USDA Forest Service Northern Research Station Morgantown West Virginia 26505 USA
Zobrazit více v PubMed
Aukema, J. E., et al. 2011. Economic impacts of non‐native forest insects in the continental United States. PLoS ONE 6:e24587. PubMed PMC
Baker, R., and Cowley J.. 1989. Evaluation of the economic impact of newly introduced pests. New Zealand Journal of Forestry Science 19:330–334.
Barron, M. C., Liebhold A. M., Kean J. M., Richardson B., and Brockerhoff E. G.. 2020. Habitat fragmentation and eradication of invading insect herbivores. Journal of Applied Ecology 57:590–598.
Basse, B., Phillips C. B., Hardwick S., and Kean J. M.. 2015. Economic benefits of biological control of Sitona obsoletus (clover root weevil) in Southland pasture. New Zealand Plant Protection 68:218–226.
Baxter, P. W., and Possingham H. P.. 2011. Optimizing search strategies for invasive pests: learn before you leap. Journal of Applied Ecology 48:86–95.
Binimelis, R., Born W., Monterroso I., and Rodríguez‐Labajos B.. 2007. Socio‐economic impact and assessment of biological invasions. Pages 331–347 in Nentwig W., editor. Biological invasions. Springer, Berlin, Germany.
Birnie, D., and Livesey A.. 2014. Lessons learned from the response to Psa‐V. Sapere Research Group Limited, Wellington, New Zealand.
Blackburn, L., Epanchin‐Niell R., Thompson A., and Liebhold A.. 2017. Predicting costs of alien species surveillance across varying transportation networks. Journal of Applied Ecology 54:225–233.
Blackwood, J. C., Berec L., Yamanaka T., Epanchin‐Niell R. S., Hastings A., and Liebhold A. M.. 2012. Bioeconomic synergy between tactics for insect eradication in the presence of Allee effects. Proceedings of the Royal Society B 279:2807–2815. PubMed PMC
Bogich, T. L., Liebhold A. M., and Shea K.. 2008. To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. Journal of Applied Ecology 45:1134–1142.
Born, W., Rauschmayer F., and Bräuer I.. 2005. Economic evaluation of biological invasions—a survey. Ecological Economics 55:321–336.
Box, G. E. P., and Draper N. R.. 1987. Empirical model‐building and response surfaces. John Wiley & Sons, Oxford, UK.
Boyd, I., Freer‐Smith P., Gilligan C., and Godfray H.. 2013. The consequence of tree pests and diseases for ecosystem services. Science 342:1235773. PubMed
Bradshaw, C. J. A., Leroy B., Bellard C., Roiz D., Albert C., Fournier A., Barbet‐Massin M., Salles J.‐M., Simard F., and Courchamp F.. 2016. Massive yet grossly underestimated global costs of invasive insects. Nature Communications 7:12986. PubMed PMC
Brockerhoff, E. G., Liebhold A. M., Richardson B., and Suckling D. M.. 2010. Eradication of invasive forest insects: concepts, methods, costs and benefits. New Zealand Journal of Forestry Science. 40:S117–S135.
Brown, K., Phillips C., Broome K., Green C., Toft R., and Walker G.. 2019. Feasibility of eradicating the large white butterfly (Pieris brassicae) from New Zealand: data gathering to inform decisions about the feasibility of eradication. Pages 364–369 in Veitch C. R., Clout M. N., Martin A. R., Russell J. C., and West C. J., editors. Island invasives: Scaling up to meet the challenge. Occasional paper SSC. Vol 62. IUCN, Gland, Switzerland.
Buongiorno, J., Zhu S., Zhang D., Turner J., and Tomberlin D.. 2003. The global forest products model: structure, estimation, and applications. Elsevier, Amsterdam, The Netherlands.
Burgman, M. A.2016. Trusting judgements: How to get the best out of experts. Cambridge University Press, Cambridge, UK.
Büyüktahtakın, İ. E., and Haight R. G.. 2018. A review of operations research models in invasive species management: state of the art, challenges, and future directions. Annals of Operations Research 271:357–403.
Cagatay, S., and Saunders C. M.. 2003. Lincoln Trade and Environment Model (LTEM): an agricultural multi‐country, multi‐commodity partial equilibrium framework. Research Report. Lincoln University, Agribusiness and Economics Research Unit, Lincoln, Canterbury, New Zealand.
Cororaton, C. B., Orden D., and Peterson E.. 2009. A review of literature on the economics of invasive species. Global issues initiative working paper, global issues initiative. Virginia Tech. Global Issues Initiative, Blacksburg, Virginia, USA.
Dixon, P. B., and Rimmer M. T.. 2013. Validation in computable general equilibrium modeling. Pages 1271–1330 in Dixon P. B. and Jorgensen D. W., editors. Handbook of computable general equilibrium modelling. Volume 1. Elsevier, Amsterdam, The Netherlands.
Dutcher, J. D.2007. A review of resurgence and replacement causing pest outbreaks in IPM. Pages 27–43 in Ciancio A. and Mukerji K. G., editors. General concepts in integrated pest and disease management. Springer, Dordrecht, The Netherlands.
Epanchin‐Niell, R. S.2017. Economics of invasive species policy and management. Biological Invasions 19:3333–3354.
Epanchin‐Niell, R. S., Brockerhoff E. G., Kean J. M., and Turner J. A.. 2014. Designing cost‐efficient surveillance for early detection and control of multiple biological invaders. Ecological Applications 24:1258–1274. PubMed
Epanchin‐Niell, R. S., Haight R. G., Berec L., Kean J. M., and Liebhold A. M.. 2012. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecology Letters 15:803–812. PubMed
Epanchin‐Niell, R. S., and Hastings A.. 2010. Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecology Letters 13:528–541. PubMed
Epanchin‐Niell, R. S., and Liebhold A. M.. 2015. Benefits of invasion prevention: effect of time lags, spread rates, and damage persistence. Ecological Economics 116:146–153.
Eschen, R., Britton K., Brockerhoff E., Burgess T., Dalley V., Epanchin‐Niell R., Gupta K., Hardy G., Huang Y., and Kenis M.. 2015. International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environmental Science & Policy 51:228–237.
Ferguson, C. M., et al. 2019. Quantifying the economic cost of invertebrate pests to New Zealand's pastoral industry. New Zealand Journal of Agricultural Research 62:255–315.
Ferrer, R. L.. 1998. Graphical methods for detecting bias in meta‐analysis. Family Medicine‐Kansas City 30:579–583. PubMed
FreemanIII, A. M., Herriges J. A., and Kling C. L.. 2014. The measurement of environmental and resource values: theory and methods. Third edition. RFF Press, Routledge, New York.
Goldson, S. L., Barratt B. I. P., and Armstrong K. F.. 2016. Invertebrate biosecurity challenges in high‐productivity grassland: The New Zealand example. Frontiers in Plant Science 7:1670. PubMed PMC
Goldson, S. L., Bourdôt G. W., Brockerhoff E. G., Byrom A. E., Clout M. N., McGlone M. S., Nelson W. A., Popay A. J., Suckling D. M., and Templeton M. D.. 2015. New Zealand pest management: current and future challenges. Journal of the Royal Society of New Zealand 45:31–58.
Gollier, C., and Hammitt J. K.. 2014. The long‐run discount rate controversy. Annual Review of Resource Economics. 6:273–295.
Greer, G., and Saunders C. M.. 2012. The costs of Psa‐V to the New Zealand kiwifruit industry and the wider community. Commissioned report. Lincoln University, Agricultural Economics Research Unit, Lincoln, New Zealand.
Gross, K., and Rosenheim J. A.. 2011. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal‐inference statistics. Ecological Applications 21:2770–2780. PubMed
Haack, R. A., Britton K. O., Brockerhoff E. G., Cavey J. F., Garrett L. J., Kimberley M., Lowenstein F., Nuding A., Olson L. J., and Turner J.. 2014. Effectiveness of the International Phytosanitary Standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLoS ONE 9:e96611. PubMed PMC
Harris Consulting . 2003. Asian gypsy moth: assessment of potential economic impacts. Report Prepared for MAF Policy.
Harrison, M.2010. Valuing the future: the social discount rate in cost‐benefit analysis. Visiting researcher paper. Productivity Commission, Canberra, Australian Capital Territory, Australia.
Hastie, T., Tibshirani R., and Friedman J.. 2009. The elements of statistical learning: data mining, inference, and prediction. Second edition. Springer‐Verlag, New York, New York, USA.
Heikkilä, J.2011. Economics of biosecurity across levels of decision‐making: A review. Agronomy for Sustainable Development 31:119–138.
Hemming, V., Burgman M. A., Hanea A. M., McBride M. F., and Wintle B. C.. 2018. A practical guide to structured expert elicitation using the IDEA protocol. Methods in Ecology and Evolution 9:169–180.
Hilborn, R., and Mangel M.. 1997. The ecological detective: confronting models with data. Princeton University Press, Princeton, New Jersey, USA.
Hilburn, D. J., and Dow R. L.. 1990. Mediterranean fruit fly, Ceratitis capitata, eradicated from Bermuda. Florida Entomologist 73:342–343.
Holmes, T. P., Aukema J. E., Von Holle B., Liebhold A., and Sills E.. 2009. Economic impacts of invasive species in forest past, present, and future. Ecology and Conservation Biology, 2009. Annals of the New York Academy of Sciences 1162:18–38. PubMed
Jain, T. R.2007. Quantitative methods. V.K. Publications, Daryaganj, New Delhi, India.
Jensen, J. L. W. V.1906. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30:175–193.
Kean, J., et al. 2019. Global eradication and response database. http://b3.net.nz/gerda
Kovacs, K. F., Haight R. G., McCullough D. G., Mercader R. J., Siegert N. W., and Liebhold A. M.. 2010. Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecological Economics 69:569–578.
Leemans, R., and de Groot R. S.. 2003. Millennium ecosystem assessment: ecosystems and human well‐being: a framework for assessment. Island Press, Washington, D.C., USA.
Leung, B., Springborn M. R., Turner J. A., and Brockerhoff E. G.. 2014. Pathway‐level risk analysis: the net present value of an invasive species policy in the US. Frontiers in Ecology and the Environment 12:273–279.
Liebhold, A. M., Berec L., Brockerhoff E. G., Epanchin‐Niell R. S., Hastings A., Herms D. A., Kean J. M., McCullough D. G., Suckling D. M., and Tobin P. C.. 2016. Eradication of invading insect populations: from concepts to applications. Annual Review of Entomology 61:335–352. PubMed
MacIntyre, P., and Hellstrom J.. 2015. An evaluation of the costs of pest wasps (Vespula species) in New Zealand. International Pest Control 57:162.
MacLeod, A., Head J., and Gaunt A.. 2004. An assessment of the potential economic impact of Thrips palmi on horticulture in England and the significance of a successful eradication campaign. Crop Protection 23:601–610.
Marbuah, G., Gren I.‐M., and McKie B.. 2014. Economics of harmful invasive species: A review. Diversity 6:500–523.
Mayo, J. H., Straka T. J., and Leonard D. S.. 2003. The cost of slowing the spread of the gypsy moth (Lepidoptera: Lymantriidae). Journal of Economic Entomology 96:1448–1454. PubMed
McCarl, B. A., and Apland J.. 1986. Validation of linear programming models. Southern Journal of Agricultural Economics 18:55–164.
McCarthy, M. A.2007. Bayesian methods for ecology. Cambridge University Press, Cambridge, UK.
McDermott, S. M., Finnoff D. C., and Shogren J. F.. 2013. The welfare impacts of an invasive species: endogenous vs. exogenous price models. Ecological Economics 85:43–49.
Michinaka, T., Tachibana S., and Turner J. A.. 2011. Estimating price and income elasticities of demand for forest products: cluster analysis used as a tool in grouping. Forest Policy and Economics 13:435–445.
Monge, J. J., Bryant H. L., and Anderson D. P.. 2014. Development of regional social accounting matrices with detailed agricultural land rent data and improved value‐added components for the USA. Economic Systems Research 26:486–510.
Monge, J. J., and Wakelin S. J.. 2019. Geographically‐explicit, dynamic partial equilibrium model of regional primary value chains—mathematical formulation and application to forestry in the Northland region of New Zealand. Computers and Electronics in Agriculture 156:145–158.
Nghiem, L. T. P., Soliman T., Yeo D. C. J., Tan H. T. W., Evans T. A., Mumford J. D., Keller R. P., Baker R. H. A., Corlett R. T., and Carrasco L. R.. 2013. Economic and environmental impacts of harmful non‐indigenous species in Southeast Asia. PLoS ONE 8:e71255. PubMed PMC
Olson, L. J.2006. The economics of terrestrial invasive species: A review of the literature. Agricultural and Resource Economics Review 35:178–194.
Parker, C.2011. Economics like there's no tomorrow. New Zealand Institute of Economic Research (NZIER), Wellington, New Zealand.
Peterson, E., Grant J., Roberts D., and Karov V.. 2013. Evaluating the trade restrictiveness of phytosanitary measures on U.S. fresh fruit and vegetable imports. American Journal of Agricultural Economics 95:842–858.
Phillips, C. B., Brown K., Green C., Toft R., Walker G., and Broome K.. 2020. Eradicating the large white butterfly from New Zealand eliminates a threat to endemic Brassicaceae. PLoS ONE 15:e0236791. PubMed PMC
Pimentel, D., Zuniga R., and Morrison D.. 2005. Update on the environmental and economic costs associated with alien‐invasive species in the United States. Ecological Economics 52:273–288.
Prestemon, J. P., Zhu S., Turner J. A., Buongiorno J., and Li R.. 2006. Forest product trade impacts of an invasive species: Modelling structure and intervention trade‐offs. Agricultural and Resource Economics Review 35:128–143.
Rabin, J., McGarrity C., and Banasiak M.. 2007. Partial budgeting: A financial management tool. USDA, Northeast Region, Sustainable Agriculture for Research & Education (SARE) in Cooperation with Rutgers Cooperative Extension, New Brunswick, New Jersey, USA.
Rich, K., Miller G., and Winter‐Nelson A.. 2005. A review of economic tools for the assessment of animal disease outbreaks. Revue Scientifique et Technique‐Office International des Epizooties 24:833. PubMed
Rothlisberger, J. D., Finnoff D. C., Cooke R. M., and Lodge D. M.. 2012. Ship‐borne nonindigenous species diminish Great Lakes ecosystem services. Ecosystems 15:1–15.
Rubinstein, A.2003. “Economics and psychology”? The case of hyperbolic discounting. International Economic Review 44:1207–1216.
Self, N. M., and Turner J. A.. 2009. Market access for New Zealand forest products: An economic and environmental case for development of alternative phytosanitary treatments. New Zealand Journal of Forestry Science 39:13.
Sharov, A. A., Leonard D., Liebhold A. M., Roberts E. A., and Dickerson W.. 2002. “Slow the spread”: A national program to contain the gypsy moth. Journal of Forestry 100:30–36.
Sharov, A. A., and Liebhold A. M.. 1998. Bioeconomics of managing the spread of exotic pest species with barrier zones. Ecological Applications 8:833–845. PubMed
Soliman, T., Mourits M. C. M., Oude Lansink A. G. J. M., and van der Werf W.. 2010. Economic impact assessment in pest risk analysis. Crop Protection 29:517–524.
Soliman, T., Mourits M. C. M., van der Werf W., Hengeveld G. M., Robinet C., and Lansink A. G. J. M. O.. 2012. Framework for modelling economic impacts of invasive species, applied to pine wood nematode in Europe. PLoS ONE 7:e45505. PubMed PMC
Strutt, A., Turner J. A., Haack R. A., and Olson L.. 2013. Evaluating the impacts of an international phytosanitary standard for wood packaging material: global and United States trade implications. Forest Policy and Economics 27:54–64.
Suckling, D. M., Kean J. M., Stringer L. D., Cáceres‐Barrios C., Hendrichs J., Reyes‐Flores J., and Dominiak B. C.. 2016. Eradication of tephritid fruit fly pest populations: outcomes and prospects. Pest Management Science 72:456–465. PubMed
Surkov, I. V., Oude Lansink A. G. J. M., and van der Werf W.. 2009. The optimal amount and allocation of sampling effort for plant health inspection. European Review of Agricultural Economics 36:295–320.
Tobin, P. C., Kean J. M., Suckling D. M., McCullough D. G., Herms D. A., and Stringer L. D.. 2014. Determinants of successful arthropod eradication programs. Biological Invasions 16:401–414.
Turner, J., Bulman L., Richardson B., and Moore J.. 2004. A cost–benefit analysis of forest health and biosecurity research. New Zealand Journal of Forestry Science 34:324–343.
Turner, J. A., and Buongiorno J.. 2004. Estimating price and income elasticities of demand for imports of forest products from panel data. Scandinavian Journal of Forest Research 19:358–373.
Turner, J. A., Buongiorno J., Zhu S., and Prestemon J. P.. 2007. Modelling the impact of the exotic forest pest Nectria on the New Zealand forest sector and its major trading partners. Journal of Forestry Science 37:383–411.
Vilà, M., and Hulme P. E.. 2017. Non‐native species, ecosystem services, and human well‐being. Pages 1–14 in Impact of biological invasions on ecosystem services. Springer International Publishing, Cham.
Weir, S., and Andrews G.. 2005. Clover root weevil economic impact assessment. Report to Biosecurity New Zealand and Ministry of Agriculture and Forestry. New Zealand Institute of Economic Research (NZIER), Wellington, New Zealand.
White, T. A., and Gerard P. J.. 2006. Modelling the farm scale impacts of clover root weevil herbivory. New Zealand Plant Protection 59:312–316.
Williams, H. P.2013. Model building in mathematical programming. John Wiley & Sons, Hoboken, New Jersey, USA.
Wittmann, M. E., Cooke R. M., Rothlisberger J. D., and Lodge D. M.. 2014. Using structured expert judgment to assess invasive species prevention: Asian carp and the Mississippi Great Lakes hydrologic connection. Environmental Science & Technology 48:2150–2156. PubMed PMC
Woodroffe, N.2010. Analysis of ISPM 15 and its impact on the wood pallet industry. Drake Journal of Agricultural Law 15:199.
Yates, C. M., and Rehman T.. 2002. Development of a partial equilibrium model of the EU agriculture using positivistic mathematical programming. European Association of Agricultural Economists, Zaragoza, Spain.
Yemshanov, D., Haight R. G., Koch F. H., Lu B., Venette R., Fournier R. E., and Turgeon J. J.. 2017. Robust surveillance and control of invasive species using a scenario optimization approach. Ecological Economics 133:86–98.
Yemshanov, D., Haight R. G., Koch F. H., Venette R. C., Swystun T., Fournier R. E., Marcotte M., Chen Y., and Turgeon J. J.. 2019. Optimizing surveillance strategies for early detection of invasive alien species. Ecological Economics 162:87–99.
Young, L.2002. Determining the discount rate for government projects. Working paper. New Zealand Treasury, Wellington, New Zealand.
Alien insect dispersal mediated by the global movement of commodities