Automated seizure detection using wearable devices: A clinical practice guideline of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, směrnice pro lékařskou praxi
PubMed
33666944
DOI
10.1111/epi.16818
Knihovny.cz E-zdroje
- Klíčová slova
- algorithms, automated detection, epilepsy, seizure detection, wearable devices,
- MeSH
- ambulantní monitorování přístrojové vybavení metody normy MeSH
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nositelná elektronika * normy MeSH
- předškolní dítě MeSH
- senioři MeSH
- záchvaty diagnóza patofyziologie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předškolní dítě MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- směrnice pro lékařskou praxi MeSH
The objective of this clinical practice guideline (CPG) is to provide recommendations for healthcare personnel working with patients with epilepsy on the use of wearable devices for automated seizure detection in patients with epilepsy, in outpatient, ambulatory settings. The Working Group of the International League Against Epilepsy (ILAE) and the International Federation of Clinical Neurophysiology (IFCN) developed the CPG according to the methodology proposed by the ILAE Epilepsy Guidelines Working Group. We reviewed the published evidence using The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement and evaluated the evidence and formulated the recommendations following the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. We found high level of evidence for the accuracy of automated detection of generalized tonic-clonic seizures (GTCS) and focal-to-bilateral tonic-clonic seizures (FBTCS) and recommend the use of wearable automated seizure detection devices for selected patients when accurate detection of GTCS and FBTCS is recommended as a clinical adjunct. We also found a moderate level of evidence for seizure types without GTCS or FBTCS. However, it was uncertain whether the detected alarms resulted in meaningful clinical outcomes for the patients. We recommend using clinically validated devices for automated detection of GTCS and FBTCS, especially in unsupervised patients, where alarms can result in rapid intervention (weak/conditional recommendation). At present, we do not recommend clinical use of the currently available devices for other seizure types (weak/conditional recommendation). Further research and development are needed to improve the performance of automated seizure detection and to document their accuracy and clinical utility.
Department of Clinical Medicine Aarhus University Aarhus C Denmark
Department of Clinical Neurophysiology Aarhus University Hospital Aarhus C Denmark
Department of Neurology Barrow Neurological Institute Phoenix AZ USA
Department of Neurology Mayo Clinic Jacksonville Florida USA
Department of Neurology Xuanwu Hospital Capital Medical University Beijing China
Zobrazit více v PubMed
Sauro KM, Wiebe S, Perucca E, French J, Dunkley C, de Marinis A, et al. Developing clinical practice guidelines for epilepsy: a report from the ILAE Epilepsy Guidelines Working Group. Epilepsia. 2015;56(12):1859-69.
Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Chinese Journal of Evidence-Based Medicine. BMJ. 2009;9:8-11.
Handbook for grading the quality of evidence and the strength of the recommendations using the GRADE approach [Internet]. 2013. https://gdt.gradepro.org/app/handbook/handbook.html. Accessed on 27 May 2020.
Schmidt D, Schachter SC. Drug treatment of epilepsy in adults. BMJ. 2014;348:g254.
Fisher RS, Blum DE, DiVentura B, Vannest J, Hixson JD, Moss R, et al. Seizure diaries for clinical research and practice: limitations and future prospects. Epilepsy Behav. 2012;24(3):304-10.
Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 2018;17(3):279-88.
Hoppe C, Poepel A, Elger CE. Epilepsy: accuracy of patient seizure counts. Arch Neurol. 2007;64(11):1595-9.
Beniczky S, Arbune A, Jeppesen J, Ryvlin P. Biomarkers of seizure severity derived from wearable devices. Epilepsia. 2020;61 (Suppl 1):S61-S66.
Salas-Puig X, Iniesta M, Abraira L, Puig J. Accidental injuries in patients with generalized tonic-clonic seizures. A multicenter, observational, cross-sectional study (QUIN-GTC study). Epilepsy Behav. 2019;92:135-9.
Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 2013;12(October):966-77.
Sveinsson O, Andersson T, Mattsson P, Carlsson S, Tomson T. Clinical risk factors in SUDEP: a nationwide population-based case-control study. Neurology. 2020;94(4):e419-e429.
Harden C, Tomson T, Gloss D, Buchhalter J, Cross JH, Donner E, et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2017;88(17):1674-80.
Schulze-Bonhage A, Sales F, Wagner K, Teotonio R, Carius A, Schelle A, et al. Views of patients with epilepsy on seizure prediction devices. Epilepsy Behav. 2010;18:388-96.
Hoppe C, Feldmann M, Blachut B, Surges R, Elger CE, Helmstaedter C. Novel techniques for automated seizure registration: patients’ wants and needs. Epilepsy Behav. 2015;52:1-7.
Van de Vel A, Smets K, Wouters K, Ceulemans B. Automated non-EEG based seizure detection: do users have a say? Epilepsy Behav. 2016;62:121-8.
Tovar Quiroga DF, Britton JW, Wirrell EC. Patient and caregiver view on seizure detection devices: a survey study. Seizure. 2016;41:179-81.
Patel AD, Moss R, Rust SW, Patterson J, Strouse R, Gedela S, et al. Patient-centered design criteria for wearable seizure detection devices. Epilepsy Behav. 2016;64:116-21.
Jo A, Coronel BD, Coakes CE, Mainous AG. Is there a benefit to patients using wearable devices such as fitbit or health apps on mobiles? A systematic review. Am J Med. 2019;132(12):1394-400.e1.
Hutchings A, Raine R. A systematic review of factors affecting the judgments produced by formal consensus development methods in health care. J Health Serv Res Policy. 2006;11:172-9.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336-41.
Beniczky S, Ryvlin P. Standards for testing and clinical validation of seizure detection devices. Epilepsia. 2018;59:9-13.
Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. An updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;2015:351.
Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529.
Arends J, Thijs RD, Gutter T, Ungureanu C, Cluitmans P, Van Dijk J, et al. Multimodal nocturnal seizure detection in a residential care setting A long-term prospective trial. Neurology. 2018;91(21):E2010-E2019.
Meritam P, Ryvlin P, Beniczky S. User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic-clonic seizures: a field study. Epilepsia. 2018;59:48-52.
Baldassano S, Zhao X, Brinkmann B, Kremen V, Bernabei J, Cook M, et al. Cloud computing for seizure detection in implanted neural devices. J Neural Eng. 2019;16(2):026016.
Baldassano SN, Brinkmann BH, Ung H, Blevins T, Conrad EC, Leyde K, et al. Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings. Brain. 2017;140(6):1680-91.
Jones J, Hunter D. Qualitative research: consensus methods for medical and health services research. BMJ. 1995;311(7001):376.
Picard RW, Migliorini M, Caborni C, Onorati F, Regalia G, Friedman D, et al. Wrist sensor reveals sympathetic hyperactivity and hypoventilation before probable SUDEP. Neurology. 2017;89(6):633-5.
Kramer U, Kipervasser S, Shlitner A, Kuzniecky R. A novel portable seizure detection alarm system : preliminary results recording. J Clin Neurophysiol. 2011;28(1):36-8.
Beniczky S, Polster T, Kjaer TW, Hjalgrim H. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: a prospective, multicenter study. Epilepsia. 2013;54(4):e58-61.
Patterson AL, Mudigoudar B, Fulton S, McGregor A, Poppel KV, Wheless MC, et al. SmartWatch by SmartMonitor: assessment of seizure detection efficacy for various seizure types in children, a large prospective single-center study. Pediatr Neurol. 2015;53(4):309-11.
Velez M, Fisher RS, Bartlett V, Le S. Tracking generalized tonic-clonic seizures with a wrist accelerometer linked to an online database. Seizure. 2016;39:13-8.
Kusmakar S, Karmakar CK, Yan B, O’Brien TJ, Muthuganapathy R, Palaniswami M. Detection of generalized tonic-clonic seizures using short length accelerometry signal. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. IEEE; 2017. p. 4566-9.
Kusmakar S, Karmakar CK, Yan B, O’Brien TJ, Muthuganapathy R, Palaniswami M. Automated detection of convulsive seizures using a wearable accelerometer device. IEEE Trans Biomed Eng. 2019;66(2):421-32.
Johansson D, Ohlsson F, Krýsl D, Rydenhag B, Czarnecki M, Gustafsson N, et al. Tonic-clonic seizure detection using accelerometry-based wearable sensors: a prospective, video-EEG controlled study. Seizure. 2019;65:48-54.
Szabõ CÁ, Morgan LC, Karkar KM, Leary LD, Lie OV, Girouard M, et al. Electromyography-based seizure detector: preliminary results comparing a generalized tonic-clonic seizure detection algorithm to video-EEG recordings. Epilepsia. 2015;56(9):1432-7.
Halford JJ, Sperling MR, Nair DR, Dlugos DJ, Tatum WO, Harvey J, et al. Detection of generalized tonic-clonic seizures using surface electromyographic monitoring. Epilepsia. 2017;58(11):1861-9.
Beniczky S, Conradsen I, Henning O, Fabricius M, Wolf P. Automated real-time detection of tonic-clonic seizures using a wearable EMG device. Neurology. 2018;90(5):e428-e434.
Boon P, Vonck K, van Rijckevorsel K, Tahry RE, Elger CE, Mullatti N, et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure. 2015;32:52-61.
Fisher RS, Afra P, Macken M, Minecan DN, Bagić A, Benbadis SR, et al. Automatic vagus nerve stimulation triggered by ictal tachycardia: clinical outcomes and device performance - The U.S. E-37 Trial. Neuromodulation. 2016;19(2):188-95.
Vandecasteele K, De Cooman T, Gu Y, Cleeren E, Claes K, Paesschen W, et al. automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment. Sensors. 2017;17(10):2338.
Jeppesen J, Fuglsang-Frederiksen A, Johansen P, Christensen J, Wüstenhagen S, Tankisi H, et al. Seizure detection based on heart rate variability using a wearable electrocardiography device. Epilepsia. 2019;60(October):2105-13.
Karayiannis NB, Tao G, Frost JD, Wise MS, Hrachovy RA, Mizrahi EM. Automated detection of videotaped neonatal seizures based on motion segmentation methods. Clin Neurophysiol. 2006;117(7):1585-94.
Karayiannis NB, Xiong Y, Frost JD, Wise MS, Hrachovy RA, Mizrahi EM. Automated detection of videotaped neonatal seizures based on motion tracking methods. J Clin Neurophysiol. 2006;23(6):521-31.
Karayiannis NB, Xiong Y, Tao G, Frost JD, Wise MS, Hrachovy RA, et al. Automated detection of videotaped neonatal seizures of epileptic origin. Epilepsia. 2006;47(6):966-80.
Geertsema EE, Thijs RD, Gutter T, Vledder B, Arends JB, Leijten FS, et al. Automated video-based detection of nocturnal convulsive seizures in a residential care setting. Epilepsia. 2018;59:53-60.
Arends JB, van Dorp J, van Hoek D, Kramer N, van Mierlo P, van der Vorst D, et al. Diagnostic accuracy of audio-based seizure detection in patients with severe epilepsy and an intellectual disability. Epilepsy Behav. 2016;62:180-5.
Narechania AP, Garić II, Sen-Gupta I, Macken MP, Gerard EE, Schuele SU. Assessment of a quasi-piezoelectric mattress monitor as a detection system for generalized convulsions. Epilepsy Behav. 2013;28(2):172-6.
Fulton S, Van PK, McGregor A, Ellis M, Patters A, Wheless J. Prospective study of 2 bed alarms for detection of nocturnal seizures. J Child Neurol. 2013;28(11):1430-3.
Gu Y, Cleeren E, Dan J, Claes K, Van Paesschen W, Van Huffel S, et al. Comparison between scalp EEG and behind-the-ear EEG for development of a wearable seizure detection system for patients with focal epilepsy. Sensors (Switzerland). 2018;18(1):29.
Jeppesen J, Beniczky S, Johansen P, Sidenius P, Fuglsang-Frederiksen A. Exploring the capability of wireless near infrared spectroscopy as a portable seizure detection device for epilepsy patients. Seizure. 2015;26:43-8.
Onorati F, Regalia G, Caborni C, Migliorini M, Bender D, Poh M-Z, et al. Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia. 2017;58(11):1870-9.
van Andel J, Ungureanu C, Arends J, Tan F, Van Dijk J, Petkov G, et al. Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? Epilepsia Open. 2017;2(4):424-31.
Cogan D, Birjandtalab J, Nourani M, Harvey J, Nagaraddi V. Multi-Biosignal analysis for epileptic seizure monitoring. Int J Neural Syst. 2017;27(01):1650031.
Nijsen TME, Arends JBAM, Griep PAM, Cluitmans PJM. The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy. Epilepsy Behav. 2005;7:74-84.
Conradsen I, Beniczky S, Wolf P, Henriksen J, Sams T, Sorensen HB. Seizure onset detection based on a Uni- or multi-modal intelligent seizure acquisition (UISA/MISA) system. Conf Proc IEEE Eng Med Biol Soc. 2010;3269-72.
Lockman J, Fisher RS, Olson DM. Detection of seizure-like movements using a wrist accelerometer. Epilepsy Behav. 2011;20(4):638-41.
Conradsen I, Wolf P, Sams T, Sorensen HB, Beniczky S. Patterns of muscle activation during generalized tonic and tonic-clonic epileptic seizures. Epilepsia. 2011;52(11):2125-32.
Conradsen I, Beniczky S, Hoppe K, Wolf P, Sorensen HB. Automated algorithm for generalized tonic-clonic epileptic seizure onset detection based on sEMG zero-crossing rate. IEEE Trans Biomed Eng. 2012;59(2):579-85.
Vandecasteele K, De Cooman T, Dan J, Cleeren E, Van Huffel S, Hunyadi B, et al. Visual seizure annotation and automated seizure detection using behind-the-ear electroencephalographic channels. Epilepsia. 2020;61(4):766-75.
van Westrhenen A, Petkov G, Kalitzin SN, Lazeron RHC, Thijs RD. Automated video-based detection of nocturnal motor seizures in children. Epilepsia. 2020;61(Suppl 1):S36-S40. https://doi.org/10.1111/epi.16504.
Harden C, Tomson T, Gloss D, Buchhalter J, Cross JH, Donner E, et al. Practice guideline summary: Sudden unexpected death in epilepsy incidence rates and risk factors: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2017;88(17):1674-80.
Blachut B, Hoppe C, Surges R, Elger C, Helmstaedter C. Subjective seizure counts by epilepsy clinical drug trial participants are not reliable. Epilepsy Behav. 2017;67:122-7.
Husain AM, Towne AR, Chen DK, Whitmire LE, Voyles SR, Cardenas DP. Differentiation of epileptic and psychogenic nonepileptic seizures using single-channel surface electromyography. J Clin Neurophysiol. 2020;https://doi.org/10.1097/WNP.0000000000000703. [Epub ahead of Print].
Beniczky S, Karoly P, Nurse E, Ryvlin P, Cook M. Machine learning and wearable devices of the future. Epilepsia. 2020. https://doi.org/10.1111/epi.16555. [Epub ahead of Print].
Davis MM, Freeman M, Kaye J, Vuckovic N, Buckley DI. A systematic review of clinician and staff views on the acceptability of incorporating remote monitoring technology into primary care. Telemed J e-health. 2014;20:428-38.
Bruno E, Simblett S, Lang A, Biondi A, Odoi C, Schulze-Bonhage A, et al. Wearable technology in epilepsy: the views of patients, caregivers, and healthcare professionals. Epilepsy Behav. 2018;85:141-9.
Nasseri M, Nurse E, Glasstetter M, Böttcher S, Gregg NM, Laks Nandakumar A, et al. Signal quality and patient experience with wearable devices for epilepsy management. Epilepsia. 2020;61(Suppl 1):S25-S35. https://doi.org/10.1111/epi.16527.