Vertebral Formulae and Congenital Vertebral Anomalies in Guinea Pigs: A Retrospective Radiographic Study

. 2021 Feb 24 ; 11 (3) : . [epub] 20210224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33668174

Grantová podpora
FVL/Crha/ITA2020 Internal Creative Agency of the University of Veterinary and Pharmaceutical Sciences Brno

The objectives of this retrospective study of 240 guinea pigs (148 females and 92 males) were to determine the prevalence of different vertebral formulae and the type and anatomical localization of congenital vertebral anomalies (CVA). Radiographs of the cervical (C), thoracic (Th), lumbar (L), sacral (S), and caudal (Cd) part of the vertebral column were reviewed. Morphology and number of vertebrae in each segment of the vertebral column and type and localization of CVA were recorded. In 210/240 guinea pigs (87.50%) with normal vertebral morphology, nine vertebral formulae were found with constant number of C but variable number of Th, L, and S vertebrae: C7/Th13/L6/S4/Cd5-7 (75%), C7/Th13/L6/S3/Cd6-7 (4.17%), C7/Th13/L5/S4/Cd6-7 (2.50%), C7/Th13/L6/S5/Cd5-6 (1.67%), C7/Th12/L6/S4/Cd6 (1.25%), C7/Th13/L7/S4/Cd6 (1.25%), C7/Th13/L7/S3/Cd6-7 (0.83%), C7/Th12/L7/S4/Cd5 (0.42%), C7/Th13/L5/S5/Cd7 (0.42%). CVA were found in 30/240 (12.5%) of guinea pigs, mostly as a transitional vertebra (28/30), which represents 100% of single CVA localised in cervicothoracic (n = 1), thoracolumbar (n = 22) and lumbosacral segments (n = 5). Five morphological variants of thoracolumbar transitional vertebrae (TTV) were identified. Two (2/30) guinea pigs had a combination of CVA: cervical block vertebra and TTV (n = 1) and TTV and lumbosacral transitional vertebra (LTV) (n = 1). These findings suggest that guinea pigs' vertebral column displays more morphological variants with occasional CVA predominantly transitional vertebrae.

Zobrazit více v PubMed

Sánchez-Macías D., Castro N., Rivero M.A., Argüello A., Morales-delaNuez A. Proposal for standard methods and procedure for guinea pig carcass evaluation, jointing and tissue separation. J. Appl. Anim. Res. 2016;44:65–70. doi: 10.1080/09712119.2015.1006234. DOI

Jaeger C.B., Blight A.R. Spinal cord compression injury in guinea pigs: Structural changes of endothelium and its perivascular cell associations after blood-brain barrier breakdown and repair. Exp. Neurol. 1997;144:381–399. doi: 10.1006/exnr.1996.6405. PubMed DOI

Brown C.J., Donnelly T.M. Rodent husbandry and care. Vet. Clin. N. Am. Exot. Anim. Pract. 2004;7:201–225. doi: 10.1016/j.cvex.2004.02.005. PubMed DOI

Pignon C., Mayer J. 21—Guinea Pigs. In: Quesenberry K.E., Orcutt C.J., Mans C., Carpenter J.W., editors. Ferrets, Rabbits, and Rodents. 4th ed. W.B. Saunders; Philadelphia, PA, USA: 2021. pp. 270–297. DOI

Nielsen T.D., Dean R.S., Robinson N.J., Massey A., Brennan M.L. Survey of the UK veterinary profession: Common species and conditions nominated by veterinarians in practice. Vet. Rec. 2014;174:324. doi: 10.1136/vr.101745. PubMed DOI PMC

Witkowska A., Alibhai A., Hughes C., Price J., Klisch K., Sturrock C.J., Rutland C.S. Computed tomography analysis of guinea pig bone: Architecture, bone thickness and dimensions throughout development. PeerJ. 2014;2:e615. doi: 10.7717/peerj.615. PubMed DOI PMC

Narita Y., Kuratani S. Evolution of the vertebral formulae in mammals: A perspective on developmental constraints. J. Exp. Zool. B Mol. Dev. Evol. 2005;304:91–106. doi: 10.1002/jez.b.21029. PubMed DOI

Breazile J.E., Brown E.M. Chapter 6—Anatomy. In: Wagner J.E., Manning P.J., editors. The Biology of the Guinea Pig. Academic Press; San Diego, CA, USA: 1976. pp. 53–62. DOI

Cooper G., Schiller A.L. Anatomy of the Guinea Pig. Harvard University Press; Cambridge, MA, USA: 1975.

Reese S., Fehr M. Small mammals: Radioanatomy. In: Krautwald-Junghanns M.E., Pees M., Reese S., Tully T., editors. Diagnostic Imaging of Exotic Pets: Birds, Small Mammals, Reptiles. Schlüttersche; Hannover, Germany: 2011. pp. 158–165.

Lossi L., D’Angelo L., De Girolamo P., Merighi A. Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig. Ann. Anat. 2016;204:11–28. doi: 10.1016/j.aanat.2015.10.002. PubMed DOI

Clemons D.J., Seeman J.L. The Laboratory Guinea Pig. 2nd ed. Taylor & Francis; Boca Raton, FL, USA: 2018.

Borgens R.B., Shi R., Bohnert D. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. J. Exp. Biol. 2002;205:1–12. PubMed

Meredith A., Richardson J. Neurological diseases of rabbits and rodents. J. Exot. Pet Med. 2015;24:21–33. doi: 10.1053/j.jepm.2014.12.007. DOI

Yan Y.Z., Li Q.P., Wu C.C., Pan X.X., Shao Z.X., Chen S.Q., Wang K., Chen X.B., Wang X.Y. Rate of presence of 11 thoracic vertebrae and 6 lumbar vertebrae in asymptomatic Chinese adult volunteers. J. Orthop. Surg. Res. 2018;13:124. doi: 10.1186/s13018-018-0835-9. PubMed DOI PMC

Newitt A., German A.J., Barr F.J. Congenital abnormalities of the feline vertebral column. Vet. Radiol. Ultrasound. 2008;49:35–41. doi: 10.1111/j.1740-8261.2007.00314.x. PubMed DOI

Morgan J.P. Congenital Anomalies of the Vertebral Column of the Dog: A Study of the Incidence and Significance Based on a Radiographic and Morphologic Study 1. Vet. Radiol. 1968;9:21–29. doi: 10.1111/j.1740-8261.1968.tb01082.x. DOI

Proks P., Stehlik L., Paninarova M., Irova K., Hauptman K., Jekl V. Congenital abnormalities of the vertebral column in ferrets. Vet. Radiol. Ultrasound. 2015;56:117–123. doi: 10.1111/vru.12192. PubMed DOI

Westworth D.R., Sturges B.K. Congenital spinal malformations in small animals. Vet. Clin. N. Am. Small Anim. Pract. 2010;40:951–981. doi: 10.1016/j.cvsm.2010.05.009. PubMed DOI

Gutierrez-Quintana R., Guevar J., Stalin C., Faller K., Yeamans C., Penderis J. A proposed radiographic classification scheme for congenital thoracic vertebral malformations in brachycephalic “screw-tailed” dog breeds. Vet. Radiol. Ultrasound. 2014;55:585–591. doi: 10.1111/vru.12172. PubMed DOI

Flückiger M., Geissbühler U., Lang J. Lumbosacral transitional vertebrae: What is their impact on the health of affected dogs? Schweiz. Arch. Tierheilkd. 2009;151:133–135. doi: 10.1024/0036-7281.151.3.133. PubMed DOI

Proks P., Stehlik L., Nyvltova I., Necas A., Vignoli M., Jekl V. Vertebral formula and congenital abnormalities of the vertebral column in rabbits. Vet. J. 2018;236:80–88. doi: 10.1016/j.tvjl.2018.04.016. PubMed DOI

Shah M., Halalmeh D.R., Sandio A., Tubbs R.S., Moisi M.D. Anatomical Variations That Can Lead to Spine Surgery at the Wrong Level: Part I, Cervical Spine. Cureus. 2020;12:e8667. doi: 10.7759/cureus.8667. PubMed DOI PMC

Shah M., Halalmeh D.R., Sandio A., Tubbs R.S., Moisi M.D. Anatomical Variations That Can Lead to Spine Surgery at the Wrong Level: Part II Thoracic Spine. Cureus. 2020;12:e8684. doi: 10.7759/cureus.8684. PubMed DOI PMC

Shah M., Halalmeh D.R., Sandio A., Tubbs R.S., Moisi M.D. Anatomical Variations That Can Lead to Spine Surgery at the Wrong Level: Part III Lumbosacral Spine. Cureus. 2020;12:e9433. doi: 10.7759/cureus.9433. PubMed DOI PMC

Asher R.J., Lin K.H., Kardjilov N., Hautier L. Variability and constraint in the mammalian vertebral column. J. Evol. Biol. 2011;24:1080–1090. doi: 10.1111/j.1420-9101.2011.02240.x. PubMed DOI

Brocal J., De Decker S., José-López R., Guevar J., Ortega M., Parkin T., Ter Haar G., Gutierrez-Quintana R. Evaluation of radiography as a screening method for detection and characterisation of congenital vertebral malformations in dogs. Vet. Rec. 2018;182:573. doi: 10.1136/vr.104388. PubMed DOI

Du Plessis A.M., Greyling L.M., Page B.J. Differentiation and classification of thoracolumbar transitional vertebrae. J. Anat. 2018;232:850–856. doi: 10.1111/joa.12781. PubMed DOI PMC

Galis F., Carrier D.R., van Alphen J., van der Mije S.D., Van Dooren T.J., Metz J.A., ten Broek C.M. Fast running restricts evolutionary change of the vertebral column in mammals. Proc. Natl. Acad. Sci. USA. 2014;111:11401–11406. doi: 10.1073/pnas.1401392111. PubMed DOI PMC

Williams S.A., Spear J.K., Petrullo L., Goldstein D.M., Lee A.B., Peterson A.L., Miano D.A., Kaczmarek E.B., Shattuck M.R. Increased variation in numbers of presacral vertebrae in suspensory mammals. Nat. Ecol. Evol. 2019;3:949–956. doi: 10.1038/s41559-019-0894-2. PubMed DOI

Kumary S.U., Moorthy O.R., Kannekanti R., Ramesh G. Gross Anatomical Observations on the Sacrum of Guinea Pig (Cavia porcellus) Int. J. Livest. Res. 2020;2:67–72. doi: 10.5455/ijlr.20200114051014. DOI

Mallo M. The vertebrate tail: A gene playground for evolution. Cell. Mol. Life Sci. 2020;77:1021–1030. doi: 10.1007/s00018-019-03311-1. PubMed DOI PMC

Kawashima T., Thorington R.W., Jr., Bohaska P.W., Sato F. Variability and constraint of vertebral formulae and proportions in colugos, tree shrews, and rodents, with special reference to vertebral modification by aerodynamic adaptation. Folia Morphol. 2018;77:44–56. doi: 10.5603/FM.a2017.0064. PubMed DOI

Inaba T., Wakisaka Y. Congenital malformation of the skeleton in Weiser-Maples guinea pigs. Jikken Dobutsu. 1992;41:189–201. doi: 10.1538/expanim1978.41.2_189. PubMed DOI

Spadliński Ł., Cecot T., Majos A., Stefańczyk L., Pietruszewska W., Wysiadecki G., Topol M., Polguj M. The Epidemiological, Morphological, and Clinical Aspects of the Cervical Ribs in Humans. BioMed Res. Int. 2016;2016:8034613. doi: 10.1155/2016/8034613. PubMed DOI PMC

van der Geer A.A.E., Galis F. High incidence of cervical ribs indicates vulnerable condition in Late Pleistocene woolly rhinoceroses. PeerJ. 2017;5:e3684. doi: 10.7717/peerj.3684. PubMed DOI PMC

Reumer J.W., Ten Broek C.M., Galis F. Extraordinary incidence of cervical ribs indicates vulnerable condition in Late Pleistocene mammoths. PeerJ. 2014;2:e318. doi: 10.7717/peerj.318. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...