Ellagic Acid Affects Metabolic and Transcriptomic Profiles and Attenuates Features of Metabolic Syndrome in Adult Male Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAUK 1132218
Grantová Agentura, Univerzita Karlova
PROGRES-Q25/LF1, SVV 260516
Univerzita Karlova v Praze
64165, General University Hospital in Prague
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33671116
PubMed Central
PMC8001306
DOI
10.3390/nu13030804
PII: nu13030804
Knihovny.cz E-zdroje
- Klíčová slova
- brown adipose tissue, ellagic acid, insulin resistance, metabolic syndrome, oxidative stress,
- MeSH
- biologické markery analýza MeSH
- dieta s vysokým obsahem tuků MeSH
- epididymis MeSH
- hnědá tuková tkáň chemie MeSH
- játra chemie MeSH
- krevní glukóza analýza MeSH
- krysa rodu Rattus MeSH
- kyselina ellagová aplikace a dávkování MeSH
- messenger RNA analýza MeSH
- metabolický syndrom genetika metabolismus prevence a kontrola MeSH
- oxidační stres účinky léků MeSH
- potkani inbrední SHR MeSH
- RNA analýza MeSH
- transkriptom účinky léků MeSH
- tuková tkáň chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- krevní glukóza MeSH
- kyselina ellagová MeSH
- messenger RNA MeSH
- RNA MeSH
Ellagic acid, a natural substance found in various fruits and nuts, was previously shown to exhibit beneficial effects towards metabolic syndrome. In this study, using a genetic rat model of metabolic syndrome, we aimed to further specify metabolic and transcriptomic responses to ellagic acid treatment. Adult male rats of the SHR-Zbtb16Lx/k.o. strain were fed a high-fat diet accompanied by daily intragastric gavage of ellagic acid (50 mg/kg body weight; high-fat diet-ellagic acid (HFD-EA) rats) or vehicle only (high-fat diet-control (HFD-CTL) rats). Morphometric and metabolic parameters, along with transcriptomic profile of liver and brown and epididymal adipose tissues, were assessed. HFD-EA rats showed higher relative weight of brown adipose tissue (BAT) and decreased weight of epididymal adipose tissue, although no change in total body weight was observed. Glucose area under the curve, serum insulin, and cholesterol levels, as well as the level of oxidative stress, were significantly lower in HFD-EA rats. The most differentially expressed transcripts reflecting the shift induced by ellagic acid were detected in BAT, showing downregulation of BAT activation markers Dio2 and Nr4a1 and upregulation of insulin-sensitizing gene Pla2g2a. Ellagic acid may provide a useful nutritional supplement to ameliorate features of metabolic syndrome, possibly by suppressing oxidative stress and its effects on brown adipose tissue.
Zobrazit více v PubMed
O’Neill S., O’Driscoll L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2015;16:1–12. doi: 10.1111/obr.12229. PubMed DOI
McCracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018;36:14–20. doi: 10.1016/j.clindermatol.2017.09.004. PubMed DOI
Després J.P., Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–887. doi: 10.1038/nature05488. PubMed DOI
Francisqueti F.V., Chiaverini L.C., Santos K.C., Minatel I.O., Ronchi C.B., Ferron A.J., Ferreira A.L., Corrêa C.R. The role of oxidative stress on the pathophysiology of metabolic syndrome. Rev. Assoc. Med. Bras. (1992) 2017;63:85–91. doi: 10.1590/1806-9282.63.01.85. PubMed DOI
Rochlani Y., Pothineni N.V., Kovelamudi S., Mehta J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017;11:215–225. doi: 10.1177/1753944717711379. PubMed DOI PMC
Kang I., Buckner T., Shay N.F., Gu L., Chung S. Improvements in Metabolic Health with Consumption of Ellagic Acid and Subsequent Conversion into Urolithins: Evidence and Mechanisms. Adv. Nutr. 2016;7:961–972. doi: 10.3945/an.116.012575. PubMed DOI PMC
Landete J.M. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int. 2011;44:1150–1160. doi: 10.1016/j.foodres.2011.04.027. DOI
Zeb A. Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Mol. Cell. Biochem. 2018;448:27–41. doi: 10.1007/s11010-018-3310-3. PubMed DOI
Panchal S.K., Ward L., Brown L. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur. J. Nutr. 2013;52:559–568. doi: 10.1007/s00394-012-0358-9. PubMed DOI
Yu X., Wang X.P., Lei F., Jiang J.F., Li J., Xing D.M., Du L.J. Pomegranate leaf attenuates lipid absorption in the small intestine in hyperlipidemic mice by inhibiting lipase activity. Chin. J. Nat. Med. 2017;15:732–739. doi: 10.1016/S1875-5364(17)30104-8. PubMed DOI
Wu D., Ma X., Tian W. Pomegranate husk extract, punicalagin and ellagic acid inhibit fatty acid synthase and adipogenesis of 3T3-L1 adipocyte. J. Funct. Foods. 2013;5:633–641. doi: 10.1016/j.jff.2013.01.005. DOI
Okla M., Kang I., Kim D.M., Gourineni V., Shay N., Gu L., Chung S. Ellagic acid modulates lipid accumulation in primary human adipocytes and human hepatoma Huh7 cells via discrete mechanisms. J. Nutr. Biochem. 2015;26:82–90. doi: 10.1016/j.jnutbio.2014.09.010. PubMed DOI
Fatima N., Hafizur R.M., Hameed A., Ahmed S., Nisar M., Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur. J. Nutr. 2017;56:591–601. doi: 10.1007/s00394-015-1103-y. PubMed DOI
Amin M.M., Arbid M.S. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Et Metab. 2017;42:181–192. doi: 10.1139/apnm-2016-0429. PubMed DOI
Raghu G., Akileshwari C., Reddy V.S., Reddy G.B. Attenuation of diabetic retinopathy in rats by ellagic acid through inhibition of AGE formation. J. Food Sci. Technol. 2017;54:2411–2421. doi: 10.1007/s13197-017-2683-8. PubMed DOI PMC
Raghu G., Jakhotia S., Yadagiri Reddy P., Kumar P.A., Bhanuprakash Reddy G. Ellagic acid inhibits non-enzymatic glycation and prevents proteinuria in diabetic rats. Food Funct. 2016;7:1574–1583. doi: 10.1039/C5FO01372K. PubMed DOI
Uzar E., Alp H., Cevik M.U., Firat U., Evliyaoglu O., Tufek A., Altun Y. Ellagic acid attenuates oxidative stress on brain and sciatic nerve and improves histopathology of brain in streptozotocin-induced diabetic rats. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2012;33:567–574. doi: 10.1007/s10072-011-0775-1. PubMed DOI
Nankar R.P., Doble M. Hybrid drug combination: Anti-diabetic treatment of type 2 diabetic Wistar rats with combination of ellagic acid and pioglitazone. Phytomed. Int. J. Phytother. Phytopharm. 2017;37:4–9. doi: 10.1016/j.phymed.2017.10.014. PubMed DOI
Kubota S., Tanaka Y., Nagaoka S. Ellagic acid affects mRNA expression levels of genes that regulate cholesterol metabolism in HepG2 cells. Biosci. Biotechnol. Biochem. 2019;83:952–959. doi: 10.1080/09168451.2019.1576498. PubMed DOI
Ding Y., Zhang B., Zhou K., Chen M., Wang M., Jia Y., Song Y., Li Y., Wen A. Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: Role of Nrf2 activation. Int. J. Cardiol. 2014;175:508–514. doi: 10.1016/j.ijcard.2014.06.045. PubMed DOI
Jordao J.B.R., Porto H.K.P., Lopes F.M., Batista A.C., Rocha M.L. Protective Effects of Ellagic Acid on Cardiovascular Injuries Caused by Hypertension in Rats. Planta Med. 2017;83:830–836. doi: 10.1055/s-0043-103281. PubMed DOI
Šeda O., Liška F., Pravenec M., Vernerová Z., Kazdová L., Křenová D., Zídek V., Šedová L., Krupková M., Křen V. Connexin 50 mutation lowers blood pressure in spontaneously hypertensive rat. Physiol. Res. 2017;66:15–28. doi: 10.33549/physiolres.933432. PubMed DOI
Bendlová B., Vaňková M., Hill M., Vacínová G., Lukášová P., VejraŽková D., Šedová L., Šeda O., Včelák J. ZBTB16 gene variability influences obesity-related parameters and serum lipid levels in Czech adults. Physiol. Res. 2017;66:S425–S431. doi: 10.33549/physiolres.933731. PubMed DOI
Smith J., Hayman G., Wang S.-J., Laulederkind S., Hoffman M., Kaldunski M., Tutaj M., Thota J., Nalabolu H., Ellanki S., et al. The Year of the Rat: The Rat Genome Database at 20: A multi-species knowledgebase and analysis platform. Nucleic Acids Res. 2019;48 doi: 10.1093/nar/gkz1041. PubMed DOI PMC
Liška F., Peterková R., Peterka M., Landa V., Zídek V., Mlejnek P., Šilhavý J., Šimáková M., Křen V., Starker C.G., et al. Targeting of the Plzf Gene in the Rat by Transcription Activator-Like Effector Nuclease Results in Caudal Regression Syndrome in Spontaneously Hypertensive Rats. PLoS ONE. 2016;11:e0164206. doi: 10.1371/journal.pone.0164206. PubMed DOI PMC
Liška F., Mancini M., Krupková M., Chylíková B., Křenová D., Šeda O., Šilhavý J., Mlejnek P., Landa V., Zídek V., et al. Plzf as a candidate gene predisposing the spontaneously hypertensive rat to hypertension, left ventricular hypertrophy, and interstitial fibrosis. Am. J. Hypertens. 2014;27:99–106. doi: 10.1093/ajh/hpt156. PubMed DOI
Seda O., Liska F., Krenova D., Kazdova L., Sedova L., Zima T., Peng J., Pelinkova K., Tremblay J., Hamet P., et al. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol. Genom. 2005;21:243–252. doi: 10.1152/physiolgenomics.00230.2004. PubMed DOI
Polce S.A., Burke C., França L.M., Kramer B., de Andrade Paes A.M., Carrillo-Sepulveda M.A. Ellagic Acid Alleviates Hepatic Oxidative Stress and Insulin Resistance in Diabetic Female Rats. Nutrients. 2018;10:531. doi: 10.3390/nu10050531. PubMed DOI PMC
Usui S., Hara Y., Hosaki S., Okazaki M. A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J. Lipid Res. 2002;43:805–814. doi: 10.1016/S0022-2275(20)30123-1. PubMed DOI
Hodúlová M., Šedová L., Křenová D., Liška F., Krupková M., Kazdová L., Tremblay J., Hamet P., Křen V., Šeda O. Genomic Determinants of Triglyceride and Cholesterol Distribution into Lipoprotein Fractions in the Rat. PLoS ONE. 2014;9:e109983. doi: 10.1371/journal.pone.0109983. PubMed DOI PMC
Malinska H., Hüttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI
Ward P.A., Till G.O., Hatherill J.R., Annesley T.M., Kunkel R.G. Systemic complement activation, lung injury, and products of lipid peroxidation. J. Clin. Investig. 1985;76:517–527. doi: 10.1172/JCI112001. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Ding X., Jian T., Yuexian W., Zuo Y., Li J., Lv H., Ma L., Ren B., Zhao L., Li W., et al. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomed. Pharmacother. 2019;110:85–94. doi: 10.1016/j.biopha.2018.11.018. PubMed DOI
Hutley L., Prins J.B. Fat as an endocrine organ: Relationship to the metabolic syndrome. Am. J. Med. Sci. 2005;330:280–289. doi: 10.1097/00000441-200512000-00005. PubMed DOI
Gourineni V., Shay N.F., Chung S., Sandhu A.K., Gu L. Muscadine grape (Vitis rotundifolia) and wine phytochemicals prevented obesity-associated metabolic complications in C57BL/6J mice. J. Agric. Food Chem. 2012;60:7674–7681. doi: 10.1021/jf3013663. PubMed DOI
Bergman R.N., Kim S.P., Hsu I.R., Catalano K.J., Chiu J.D., Kabir M., Richey J.M., Ader M. Abdominal Obesity: Role in the Pathophysiology of Metabolic Disease and Cardiovascular Risk. Am. J. Med. 2007;120:S3–S8. doi: 10.1016/j.amjmed.2006.11.012. PubMed DOI
Klop B., Elte J.W.F., Cabezas M.C. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients. 2013;5:1218–1240. doi: 10.3390/nu5041218. PubMed DOI PMC
Matsuda M., Shimomura I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract. 2013;7:e330–e341. doi: 10.1016/j.orcp.2013.05.004. PubMed DOI
Sun Y.-L., Zhou F.-M., Wang H.-R. Mechanism of pomegranate ellagic polyphenols reducing insulin resistance on gestational diabetes mellitus rats. Am. J. Transl. Res. 2019;11:5487–5500. PubMed PMC
Makino-Wakagi Y., Yoshimura Y., Uzawa Y., Zaima N., Moriyama T., Kawamura Y. Ellagic acid in pomegranate suppresses resistin secretion by a novel regulatory mechanism involving the degradation of intracellular resistin protein in adipocytes. Biochem. Biophys. Res. Commun. 2012;417:880–885. doi: 10.1016/j.bbrc.2011.12.067. PubMed DOI
Yoshimura Y., Nishii S., Zaima N., Moriyama T., Kawamura Y. Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic ppara in obese, diabetic KK-A(y) mice. Biochem. Biophys. Res. Commun. 2013;434:486–491. doi: 10.1016/j.bbrc.2013.03.100. PubMed DOI
Liu R., Li J., Cheng Y., Huo T., Xue J., Liu Y., Liu J., Chen X. Effects of ellagic acid-rich extract of pomegranates peel on regulation of cholesterol metabolism and its molecular mechanism in hamsters. Food. Funct. 2015;6:780–787. doi: 10.1039/C4FO00759J. PubMed DOI
Monika P., Geetha A. The modulating effect of Persea americana fruit extract on the level of expression of fatty acid synthase complex, lipoprotein lipase, fibroblast growth factor-21 and leptin—A biochemical study in rats subjected to experimental hyperlipidemia and obesity. Phytomed. Int. J. Phytother. Phytopharm. 2015;22:939–945. doi: 10.1016/j.phymed.2015.07.001. PubMed DOI
Marseglia L., Manti S., D’Angelo G., Nicotera A., Parisi E., Di Rosa G., Gitto E., Arrigo T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2014;16:378–400. doi: 10.3390/ijms16010378. PubMed DOI PMC
Yu Y.-M., Chang W.-C., Wu C.-H., Chiang S.-Y. Reduction of oxidative stress and apoptosis in hyperlipidemic rabbits by ellagic acid. J. Nutr. Biochem. 2005;16:675–681. doi: 10.1016/j.jnutbio.2005.03.013. PubMed DOI
Berkban T., Boonprom P., Bunbupha S., Welbat J.U., Kukongviriyapan U., Kukongviriyapan V., Pakdeechote P., Prachaney P. Ellagic Acid Prevents L-NAME-Induced Hypertension via Restoration of eNOS and p47phox Expression in Rats. Nutrients. 2015;7:5265–5280. doi: 10.3390/nu7075222. PubMed DOI PMC
Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharm. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC
Galano A., Francisco Marquez M., Pérez-González A. Ellagic acid: An unusually versatile protector against oxidative stress. Chem. Res. Toxicol. 2014;27:904–918. doi: 10.1021/tx500065y. PubMed DOI
Marlatt K.L., Ravussin E. Brown Adipose Tissue: An Update on Recent Findings. Curr. Obes. Rep. 2017;6:389–396. doi: 10.1007/s13679-017-0283-6. PubMed DOI PMC
Park W.Y., Choe S.K., Park J., Um J.Y. Black Raspberry (Rubus coreanus Miquel) Promotes Browning of Preadipocytes and Inguinal White Adipose Tissue in Cold-Induced Mice. Nutrients. 2019;11:2164. doi: 10.3390/nu11092164. PubMed DOI PMC
Wang L., Wei Y., Ning C., Zhang M., Fan P., Lei D., Du J., Gale M., Ma Y., Yang Y. Ellagic acid promotes browning of white adipose tissues in high-fat diet-induced obesity in rats through suppressing white adipocyte maintaining genes. Endocr. J. 2019;66:923–936. doi: 10.1507/endocrj.EJ18-0467. PubMed DOI
Ivandic B., Castellani L.W., Wang X.P., Qiao J.H., Mehrabian M., Navab M., Fogelman A.M., Grass D.S., Swanson M.E., de Beer M.C., et al. Role of group II secretory phospholipase A2 in atherosclerosis: 1. Increased atherogenesis and altered lipoproteins in transgenic mice expressing group IIa phospholipase A2. Arterioscler. Thromb. Vasc. Biol. 1999;19:1284–1290. doi: 10.1161/01.ATV.19.5.1284. PubMed DOI
Kuefner M.S., Pham K., Redd J.R., Stephenson E.J., Harvey I., Deng X., Bridges D., Boilard E., Elam M.B., Park E.A. Secretory phospholipase A(2) group IIA modulates insulin sensitivity and metabolism. J. Lipid Res. 2017;58:1822–1833. doi: 10.1194/jlr.M076141. PubMed DOI PMC
Okada K., LeClair K.B., Zhang Y., Li Y., Ozdemir C., Krisko T.I., Hagen S.J., Betensky R.A., Banks A.S., Cohen D.E. Thioesterase superfamily member 1 suppresses cold thermogenesis by limiting the oxidation of lipid droplet-derived fatty acids in brown adipose tissue. Mol. Metab. 2016;5:340–351. doi: 10.1016/j.molmet.2016.02.002. PubMed DOI PMC
Ohtomo T., Ino K., Miyashita R., Chigira M., Nakamura M., Someya K., Inaba N., Fujita M., Takagi M., Yamada J. Chronic high-fat feeding impairs adaptive induction of mitochondrial fatty acid combustion-associated proteins in brown adipose tissue of mice. Biochem. Biophys. Rep. 2017;10:32–38. doi: 10.1016/j.bbrep.2017.02.002. PubMed DOI PMC
Plaisier C.L., Bennett B.J., He A., Guan B., Lusis A.J., Reue K., Vergnes L. Zbtb16 has a role in brown adipocyte bioenergetics. Nutr. Diabetes. 2012;2:e46. doi: 10.1038/nutd.2012.21. PubMed DOI PMC
Šeda O., Tremblay J., Gaudet D., Brunelle P.-L., Gurau A., Merlo E., Pilote L., Orlov Sergei N., Boulva F., Petrovich M., et al. Systematic, Genome-Wide, Sex-Specific Linkage of Cardiovascular Traits in French Canadians. Hypertension. 2008;51:1156–1162. doi: 10.1161/HYPERTENSIONAHA.107.105247. PubMed DOI