Screening of SIRT6 inhibitors and activators: A novel activator has an impact on breast cancer cells

. 2021 Jun ; 138 () : 111452. [epub] 20210305

Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33684691

Grantová podpora
ZIA AG000295 Intramural NIH HHS - United States

Odkazy

PubMed 33684691
PubMed Central PMC12036750
DOI 10.1016/j.biopha.2021.111452
PII: S0753-3322(21)00237-7
Knihovny.cz E-zdroje

Sirtuin 6 (SIRT6), a member of sirtuin family (SIRT1-7), regulates a variety of cellular processes involved in aging, metabolism, and cancer. Dysregulation of SIRT6 is widely observed in different breast cancer subtypes; however, the role and function of SIRT6 in cancer development remain largely unexplored. The aim of this study was to identify novel compounds targeting SIRT6 which may provide a new approach in development of anti-cancer therapy for breast cancer. Virtual screening was utilized to discover potential compounds targeting SIRT6 for in vitro screening. In addition, novel 1,4-dihydropyridine derivatives were synthetized and further subjected for the screening. The impact of the compounds on the deacetylation activity of SIRT6 was determined with HPLC method. The anti-cancer activities were screened for a panel of breast cancer cells. A set of 1,4-dihydropyridine derivatives was identified as SIRT6 inhibitors. A SIRT6 activating compound, (2,4-dihydroxy-phenyl)-2-oxoethyl 2-(3-methyl-4-oxo-2-phenyl-4H-chromen-8-yl)acetate (later called as 4H-chromen), was discovered and it provided 30-40-fold maximal activation. 4H-chromen was proposed to bind similarly to quercetin and place to previously reported SIRT6 activator sites. 4H-chromen was investigated in various breast cancer cells, and it decreased cell proliferation in all cells as well as arrested cell cycle in triple negative cells. Overall, this study describes a highly potent SIRT6 activator and new inhibitors that represent a novel tool to study the mechanism of SIRT6 function.

Zobrazit více v PubMed

Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TLA, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF, SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin, Nature 452 (2008) 492–496, 10.1038/nature06736. PubMed DOI PMC

Tasselli L, Xi Y, Zheng W, Tennen RI, Odrowaz Z, Simeoni F, Li W, Chua KF, SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence, Nat. Struct. Mol. Biol 23 (2016) 434–440, 10.1038/nsmb.3202. PubMed DOI PMC

Feldman JL, Baeza J, Denu JM, Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins, J. Biol. Chem 288 (2013) 31350–31356, 10.1074/jbc.C113.511261. PubMed DOI PMC

Zhang X, Spiegelman NA, Nelson OD, Jing H, Lin H, SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation, Elife 6 (2017), e25158, 10.7554/eLife.25158. PubMed DOI PMC

Rezazadeh S, Yang D, Tombline G, Simon M, Regan SP, Seluanov A, Gorbunova V, SIRT6 promotes transcription of a subset of NRF2 targets by mono-ADP-ribosylating BAF170, Nucleic Acids Res 47 (2019) 7914–7928, 10.1093/nar/gkz528. PubMed DOI PMC

Tasselli L, Zheng W, Chua KF, SIRT6: novel mechanisms and links to aging and disease, Trends Endocrinol. Metab 28 (2017) 168–185, 10.1016/j.tem.2016.10.002. PubMed DOI PMC

Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R, The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha, Cell 140 (2010) 280–293, 10.1016/j.cell.2009.12.041. PubMed DOI PMC

Desantis V, Lamanuzzi A, Vacca A, The role of SIRT6 in tumors, Haematologica 103 (2018) 1–4, 10.3324/haematol.2017.182675. PubMed DOI PMC

Wang Y, Pan T, Wang H, Li L, Li J, Zhan D, Yang H, Overexpression of SIRT6 attenuates the tumorigenicity of hepatocellular carcinoma cells, Oncotarget 8 (2017) 76223–76230, 10.18632/oncotarget.19297. PubMed DOI PMC

Imai S, Armstrong CM, Kaeberlein M, Guarente L, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature 403 (2000) 795–800, 10.1038/35001622. PubMed DOI

Rahnasto-Rilla MK, McLoughlin P, Kulikowicz T, Doyle M, Bohr VA, Lahtela-Kakkonen M, Ferrucci L, Hayes M, Moaddel R, The identification of a SIRT6 activator from brown algae Fucus distichus, Mar. Drugs 15 (2017) 190, 10.3390/md15060190. PubMed DOI PMC

Rahnasto-Rilla M, Tyni J, Huovinen M, Jarho E, Kulikowicz T, Ravichandran S, Bohr VA, Ferrucci L, Lahtela-Kakkonen M, Moaddel R, Natural polyphenols as sirtuin 6 modulators, Sci. Rep 8 (2018), 4163, 10.1038/s41598-018-22388-5. PubMed DOI PMC

Rahnasto-Rilla M, Järvenpää J, Huovinen M, Schroderus A-M, Ihantola E-L, Küblbeck J, Khadeer M, Moaddel R, Lahtela-Kakkonen M, Effects of galloflavin and ellagic acid on sirtuin 6 and its anti-tumorigenic activities, Biomed. Pharmacother 131 (2020), 110701, 10.1016/j.biopha.2020.110701. PubMed DOI PMC

You W, Rotili DD, Li T-M, Kambach C, Meleshin M, Schutkowski M, Chua KF, Mai A, Steegborn C, Structural basis of Sirtuin 6 activation by synthetic small molecules, Angew. Chem. Int. Ed. Engl 56 (2017) 1007–1011, 10.1002/anie.201610082. PubMed DOI

You W, Zheng W, Weiss S, Chua KF, Steegborn C, Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives, Sci. Rep 9 (2019), 19176, 10.1038/s41598-019-55654-1. PubMed DOI PMC

Huang Z, Zhao J, Deng W, Chen Y, Shang J, Song K, Zhang L, Wang C, Lu S, Yang X, He B, Min J, Hu H, Tan M, Xu J, Zhang Q, Zhong J, Sun X, Mao Z, Lin H, Xiao M, Chin YE, Jiang H, Xu Y, Chen G, Zhang J, Identification of a cellularly active SIRT6 allosteric activator, Nat. Chem. Biol 14 (2018) 1118–1126, 10.1038/s41589-018-0150-0. PubMed DOI

Yasuda M, Wilson DR, Fugmann SD, Moaddel R, Synthesis and characterization of SIRT6 protein coated magnetic beads: identification of a novel inhibitor of SIRT6 deacetylase from medicinal plant extracts, Anal. Chem 83 (2011) 7400–7407, 10.1021/ac201403y. PubMed DOI PMC

Kokkonen P, Rahnasto-Rilla M, Kiviranta PH, Huhtiniemi T, Laitinen T, Poso A, Jarho E, Lahtela-Kakkonen M, Peptides and pseudopeptides as SIRT6 deacetylation inhibitors, ACS Med. Chem. Lett 3 (2012) 969–974, 10.1021/ml300139n. PubMed DOI PMC

Parenti MD, Grozio A, Bauer I, Galeno L, Damonte P, Millo E, Sociali G, Franceschi C, Ballestrero A, Bruzzone S, Del Rio A, Discovery of novel and selective SIRT6 inhibitors, J. Med. Chem 57 (2014) 4796–4804, 10.1021/jm500487d. PubMed DOI

Sociali G, Galeno L, Parenti MD, Grozio A, Bauer I, Passalacqua M, Boero S, Donadini A, Millo E, Bellotti M, Sturla L, Damonte P, Puddu A, Ferroni C, Varchi G, Franceschi C, Ballestrero A, Poggi A, Bruzzone S, Nencioni A, Del Rio A, Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics, Eur. J. Med. Chem 102 (2015) 530–539, 10.1016/j.ejmech.2015.08.024. PubMed DOI

Liu J, Zheng W, Cyclic peptide-based potent human SIRT6 inhibitors, Org. Biomol. Chem 14 (2016) 5928–5935, 10.1039/c5ob02339d. PubMed DOI

Damonte P, Sociali G, Parenti MD, Soncini D, Bauer I, Boero S, Grozio A, von Holtey M, Piacente F, Becherini P, Sanguineti R, Salis A, Damonte G, Cea M, Murone M, Poggi A, Nencioni A, Del Rio A, Bruzzone S, SIRT6 inhibitors with salicylate-like structure show immunosuppressive and chemosensitizing effects, Bioorg. Med. Chem 25 (2017) 5849–5858, 10.1016/j.bmc.2017.09.023. PubMed DOI

Heger VV, Tyni J, Hunyadi A, Horáková L, Lahtela-Kakkonen M, Rahnasto-Rilla M, Quercetin based derivatives as sirtuin inhibitors, Biomed. Pharmacother 111 (2019) 1326–1333, 10.1016/j.biopha.2019.01.035. PubMed DOI

Banks JL, Beard HS, Cao Y, Cho AE, Damm W, Farid R, Felts AK, Halgren TA, Mainz DT, Maple JR, Murphy R, Philipp DM, Repasky MP, Zhang LY, Berne BJ, Friesner RA, Gallicchio E, Levy RM, Integrated modeling program, applied chemical theory (IMPACT), J. Comput. Chem 26 (2005) 1752–1780, 10.1002/jcc.20292. PubMed DOI PMC

Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM, Structure and biochemical functions of SIRT6, J. Biol. Chem 286 (2011) 14575–14587, 10.1074/jbc.M111.218990. PubMed DOI PMC

Halgren TA, Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94, J. Comput. Chem 17 (1996) 490–519, 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P. DOI

Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH, PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions, J. Chem. Theory Comput 7 (2011) 525–537, 10.1021/ct100578z. PubMed DOI

Roos K, Wu C, Damm W, Reboul M, Stevenson JM, Lu C, Dahlgren MK, Mondal S, Chen W, Wang L, Abel R, Friesner RA, Harder ED, OPLS3e: extending force field coverage for drug-like small molecules, J. Chem. Theory Comput 15 (2019) 1863–1874, 10.1021/acs.jctc.8b01026. PubMed DOI

Muller PY, Janovjak H, Miserez AR, Dobbie Z, Processing of gene expression data generated by quantitative real-time RT–PCR, Biotechniques 32 (2002) 1378–1379, 1372,–4, 1376. PubMed

Huovinen M, Loikkanen J, Myllynen P, Vähäkangas KH, Characterization of human breast cancer cell lines for the studies on p53 in chemical carcinogenesis, Toxicol. Vitr 25 (2011) 1007–1017, 10.1016/j.tiv.2011.03.018. PubMed DOI

Misane I, Klusa V, Dambrova M, Germane S, Duburs G, Bisenieks E, Rimondini ER, Ogren SO, “Atypical” neuromodulatory profile of glutapyrone, a representative of a novel ‘class’ of amino acid–containing dipeptide-mimicking 1,4-dihydropyridine (DHP) compounds: in vitro and in vivo studies, Eur. Neuropsychopharmacol 8 (1998) 329–347, 10.1016/s0924-977x(97)00097-7. PubMed DOI

Klusa V, Atypical 1,4-dihydropyridine derivatives, an approach to neuroprotection and memory enhancement, Pharmacol. Res 113 (2016) 754–759, 10.1016/j.phrs.2016.05.017. PubMed DOI

Biseniex EA, Duburs GJ, Uldrikis JR, Veveris MM, Kimenis AA, Ivanov EV, 2-(2,6-Dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine-4-carboxamide glutaric acid, its disodium salt, and method of their preparation Priority1980-06-12; Publication 1982-09-28; Pat US 4485239A. 1982.

Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang L-L, Scherer B, Sinclair DA, Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature 425 (2003) 191–196, 10.1038/nature01960. PubMed DOI

Mai A, Massa S, Lavu S, Pezzi R, Simeoni S, Ragno R, Mariotti FR, Chiani F, Camilloni G, Sinclair DA, Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors, J. Med. Chem 48 (2005) 7789–7795, 10.1021/jm050100l. PubMed DOI

Napper AD, Hixon J, McDonagh T, Keavey K, Pons J-F, Barker J, Yau WT, Amouzegh P, Flegg A, Hamelin E, Thomas RJ, Kates M, Jones S, Navia MA, Saunders JO, DiStefano PS, Curtis R, Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1, J. Med. Chem 48 (2005) 8045–8054, 10.1021/jm050522v. PubMed DOI

Kokkonen P, Rahnasto-Rilla M, Mellini P, Jarho E, Lahtela-Kakkone M, Kokkola T, Studying SIRT6 regulation using H3K56 based substrate and small molecules, Eur. J. Pharm. Sci 63 (2014) 71–76, 10.1016/j.ejps.2014.06.015. PubMed DOI

Mai A, Valente S, Meade S, Carafa V, Tardugno M, Nebbioso A, Galmozzi A, Mitro N, De Fabiani E, Altucci L, Kazantsev A, Study of 1,4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors, J. Med. Chem 52 (2009) 5496–5504, 10.1021/jm9008289. PubMed DOI

Valente S, Mellini P, Spallotta F, Carafa V, Nebbioso A, Polletta L, Carnevale I, Saladini S, Trisciuoglio D, Gabellini C, Tardugno M, Zwergel C, Cencioni C, Atlante S, Moniot S, Steegborn C, Budriesi R, Tafani M, Delf Bufalo D, Altucci L, Gaetano C, Mai A, 1,4-dihydropyridines active on the SIRT1/AMPK pathway ameliorate skin repair and mitochondrial function and exhibit inhibition of proliferation in cancer cells, J. Med. Chem 59 (2016) 1471–1491, 10.1021/acs.jmedchem.5b01117. PubMed DOI

Milkovic L, Vukovic T, Zarkovic N, Tatzber F, Bisenieks E, Kalme Z, Bruvere I, Ogle Z, Poikans J, Velena A, Duburs G, Antioxidative 1,4-dihydropyridine derivatives modulate oxidative stress and growth of human osteoblast-like cells in vitro, Antioxidants 7 (2018), 123, 10.3390/antiox7090123. PubMed DOI PMC

Klein MA, Liu C, Kuznetsov VI, Feltenberger JB, Tang W, Denu JM, Mechanism of activation for the sirtuin 6 protein deacylase, J. Biol. Chem 295 (2020) 1385–1399, 10.1074/jbc.RA119.011285. PubMed DOI PMC

Holliday DL, Speirs V, Choosing the right cell line for breast cancer research, Breast Cancer Res 13 (2011) 215, 10.1186/bcr2889. PubMed DOI PMC

Dai X, Cheng H, Bai Z, Li J, Breast cancer cell line classification and its relevance with breast tumor subtyping, J. Cancer 8 (2017) 3131–3141, 10.7150/jca.18457. PubMed DOI PMC

Garcia-Peterson LM, Ndiaye MA, Singh CK, Chhabra G, Huang W, Ahmad N, SIRT6 histone deacetylase functions as a potential oncogene in human melanoma, Genes Cancer 8 (2017) 701–712, 10.18632/genesandcancer.153. PubMed DOI PMC

Igci M, Kalender ME, Borazan E, Bozgeyik I, Bayraktar R, Bozgeyik E, Camci C, Arslan A, High-throughput screening of Sirtuin family of genes in breast cancer, Gene 586 (2016) 123–128, 10.1016/j.gene.2016.04.023. PubMed DOI

Uzelac B, Krivokuca A, Brankovic-Magic M, Magic Z, Susnjar S, Milovanovic Z, Supic G, Expression of SIRT1, SIRT3 and SIRT6 genes for predicting survival in triple-negative and hormone receptor-positive subtypes of breast cancer, Pathol. Oncol. Res 26 (2020) 2723–2731, 10.1007/s12253-020-00873-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...