Whole Genome Sequencing Prioritizes CHEK2, EWSR1, and TIAM1 as Possible Predisposition Genes for Familial Non-Medullary Thyroid Cancer
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33692755
PubMed Central
PMC7937922
DOI
10.3389/fendo.2021.600682
Knihovny.cz E-zdroje
- Klíčová slova
- CHEK2, EWSR1, TIAM1, familial non-medullary thyroid cancer, germline variant, non-syndromic, whole-genome sequencing,
- MeSH
- checkpoint kinasa 2 chemie genetika metabolismus MeSH
- frekvence genu MeSH
- genetická predispozice k nemoci * MeSH
- genom lidský MeSH
- lidé MeSH
- papilární karcinom štítné žlázy genetika metabolismus MeSH
- protein EWS vázající RNA chemie genetika metabolismus MeSH
- protein TIAM1 chemie genetika metabolismus MeSH
- rodokmen MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- sekvenování celého genomu MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Itálie MeSH
- Názvy látek
- checkpoint kinasa 2 MeSH
- CHEK2 protein, human MeSH Prohlížeč
- EWSR1 protein, human MeSH Prohlížeč
- protein EWS vázající RNA MeSH
- protein TIAM1 MeSH
- TIAM1 protein, human MeSH Prohlížeč
Familial inheritance in non-medullary thyroid cancer (NMTC) is an area that has yet to be adequately explored. Despite evidence suggesting strong familial clustering of non-syndromic NMTC, known variants still account for a very small percentage of the genetic burden. In a recent whole genome sequencing (WGS) study of five families with several NMTCs, we shortlisted promising variants with the help of our in-house developed Familial Cancer Variant Prioritization Pipeline (FCVPPv2). Here, we report potentially disease-causing variants in checkpoint kinase 2 (CHEK2), Ewing sarcoma breakpoint region 1 (EWSR1) and T-lymphoma invasion and metastasis-inducing protein 1 (TIAM1) in one family. Performing WGS on three cases, one probable case and one healthy individual in a family with familial NMTC left us with 112254 variants with a minor allele frequency of less than 0.1%, which was reduced by pedigree-based filtering to 6368. Application of the pipeline led to the prioritization of seven coding and nine non-coding variants from this family. The variant identified in CHEK2, a known tumor suppressor gene involved in DNA damage-induced DNA repair, cell cycle arrest, and apoptosis, has been previously identified as a germline variant in breast and prostate cancer and has been functionally validated by Roeb et al. in a yeast-based assay to have an intermediate effect on protein function. We thus hypothesized that this family may harbor additional disease-causing variants in other functionally related genes. We evaluated two further variants in EWSR1 and TIAM1 with promising in silico results and reported interaction in the DNA-damage repair pathway. Hence, we propose a polygenic mode of inheritance in this family. As familial NMTC is considered to be more aggressive than its sporadic counterpart, it is important to identify such susceptibility genes and their associated pathways. In this way, the advancement of personalized medicine in NMTC patients can be fostered. We also wish to reopen the discussion on monogenic vs polygenic inheritance in NMTC and instigate further development in this area of research.
Division of Molecular Genetic Epidemiology German Cancer Research Center Heidelberg Germany
Division of Pediatric Neurooncology German Cancer Research Center Heidelberg Germany
Faculty of Medicine and Biomedical Center in Pilsen Charles University Prague Pilsen Czechia
Medical Faculty Heidelberg University Heidelberg Germany
Preclinical Pediatric Oncology Hopp Children's Cancer Center Heidelberg Germany
Zobrazit více v PubMed
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68:394–424. 10.3322/caac.21492 PubMed DOI
Mazeh H, Sippel RS. Familial nonmedullary thyroid carcinoma. Thyroid (2013) 23:1049–56. 10.1089/thy.2013.0079 PubMed DOI
Bonora E, Tallini G, Romeo G. Genetic predisposition to familial nonmedullary thyroid cancer: an update of molecular findings and state-of-the-art studies. J Oncol (2010) 2010:385206. 10.1155/2010/385206 PubMed DOI PMC
Charkes ND. On the prevalence of familial nonmedullary thyroid cancer in multiply affected kindreds. Thyroid (2006) 16:181–6. 10.1089/thy.2006.16.181 PubMed DOI
El Lakis M, Giannakou A, Nockel PJ, Wiseman D, Gara SK, Patel D, et al. . Do patients with familial nonmedullary thyroid cancer present with more aggressive disease? Implications for initial surgical treatment. Surgery (2019) 165:50–7. 10.1016/j.surg.2018.05.075 PubMed DOI PMC
Fallah M, Pukkala E, Tryggvadottir L, Olsen JH, Tretli S, Sundquist K, et al. . Risk of thyroid cancer in first-degree relatives of patients with non-medullary thyroid cancer by histology type and age at diagnosis: a joint study from five Nordic countries. J Med Genet (2013) 50:373–82. 10.1136/jmedgenet-2012-101412 PubMed DOI
Hincza K, Kowalik A, Kowalska A. Current knowledge of germline genetic risk factors for the development of non-medullary thyroid cancer. Genes (Basel) (2019) 10(7):482. 10.3390/genes10070482 PubMed DOI PMC
Peiling Yang S, Ngeow J. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr Relat Cancer (2016) 23:R577–95. 10.1530/ERC-16-0067 PubMed DOI
Capezzone M, Cantara S, Marchisotta S, Filetti S, De Santi MM, Rossi B, et al. . Short telomeres, telomerase reverse transcriptase gene amplification, and increased telomerase activity in the blood of familial papillary thyroid cancer patients. J Clin Endocrinol Metab (2008) 93:3950–7. 10.1210/jc.2008-0372 PubMed DOI
Srivastava A, Kumar A, Giangiobbe S, Bonora E, Hemminki K, Forsti A, et al. . Whole genome sequencing of familial non-medullary thyroid cancer identifies germline alterations in MAPK/ERK and PI3K/AKT signaling pathways. Biomolecules (2019) 9(10):605. 10.3390/biom9100605 PubMed DOI PMC
Roeb W, Higgins J, King MC. Response to DNA damage of CHEK2 missense mutations in familial breast cancer. Hum Mol Genet (2012) 21:2738–44. 10.1093/hmg/dds101 PubMed DOI PMC
Wang Y, Dai B, Ye D. CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis. Int J Clin Exp Med (2015) 8:15708–15. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (2009) 25:1754–60. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, Consortium WGS, et al. . Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet (2014) 46:912–8. 10.1038/ng.3036 PubMed DOI PMC
Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. . A global reference for human genetic variation. Nature (2015) 526:68–74. 10.1038/nature15393 PubMed DOI PMC
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. . Analysis of protein-coding genetic variation in 60,706 humans. Nature (2016) 536:285–91. 10.1038/nature19057 PubMed DOI PMC
Smigielski EM, Sirotkin K, Ward M, Sherry ST. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res (2000) 28:352–5. 10.1093/nar/28.1.352 PubMed DOI PMC
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res (2010) 38:e164. 10.1093/nar/gkq603 PubMed DOI PMC
Kumar A, Bandapalli OR, Paramasivam N, Giangiobbe S, Diquigiovanni C, Bonora E, et al. . Familial cancer variant prioritization pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family. Sci Rep (2018) 8:11635. 10.1038/s41598-018-29952-z PubMed DOI PMC
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet (2014) 46:310–5. 10.1038/ng.2892 PubMed DOI PMC
Cooper GM, Stone EA, Asimenos G, Program NCS, Green ED, Batzoglou S, et al. . Distribution and intensity of constraint in mammalian genomic sequence. Genome Res (2005) 15:901–13. 10.1101/gr.3577405 PubMed DOI PMC
Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res (2010) 20:110–21. 10.1101/gr.097857.109 PubMed DOI PMC
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. . Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res (2005) 15:1034–50. 10.1101/gr.3715005 PubMed DOI PMC
Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat (2016) 37:235–41. 10.1002/humu.22932 PubMed DOI PMC
Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. Genic intolerance to functional variation and the interpretation of personal genomes. PloS Genet (2013) 9:e1003709. 10.1371/journal.pgen.1003709 PubMed DOI PMC
Robinson JT, Thorvaldsdottir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the integrative genomics viewer. Cancer Res (2017) 77:e31–4. 10.1158/0008-5472.CAN-17-0337 PubMed DOI PMC
Papadopoulos JS, Agarwala R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics (2007) 23:1073–9. 10.1093/bioinformatics/btm076 PubMed DOI
Hecht M, Bromberg Y, Rost B. Better prediction of functional effects for sequence variants. BMC Genomics (2015) 16:S1. 10.1186/1471-2164-16-S8-S1 PubMed DOI PMC
Pires DEV, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics (Oxford . England) (2014) 30:335–42. 10.1093/bioinformatics/btt691 PubMed DOI PMC
Velankar S, Alhroub Y, Alili A, Best C, Boutselakis HC, Caboche S, et al. . PDBe: protein data bank in Europe. Nucleic Acids Res (2011) 39:D402–10. 10.1093/nar/gkq985 PubMed DOI PMC
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. . STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res (2019) 47:D607–d613. 10.1093/nar/gky1131 PubMed DOI PMC
Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK, et al. . Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet (2003) 72:270–80. 10.1086/346094 PubMed DOI PMC
Oliver AW, Paul A, Boxall KJ, Barrie SE, Aherne GW, Garrett MD, et al. . Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. EMBO J (2006) 25:3179–90. 10.1038/sj.emboj.7601209 PubMed DOI PMC
Boissier P, Huynh-Do U. The guanine nucleotide exchange factor Tiam1: a Janus-faced molecule in cellular signaling. Cell Signal (2014) 26:483–91. 10.1016/j.cellsig.2013.11.034 PubMed DOI
Mertens AE, Roovers RC, Collard JG. Regulation of Tiam1-Rac signalling. FEBS Lett (2003) 546:11–6. 10.1016/S0014-5793(03)00435-6 PubMed DOI
Jin J, Cai L, Liu ZM, Zhou XS. miRNA-218 inhibits osteosarcoma cell migration and invasion by down-regulating of TIAM1, MMP2 and MMP9. Asian Pac J Cancer Prev (2013) 14:3681–4. 10.7314/APJCP.2013.14.6.3681 PubMed DOI
Li J, Liang S, Jin H, Xu C, Ma D, Lu X. Tiam1, negatively regulated by miR-22, miR-183 and miR-31, is involved in migration, invasion and viability of ovarian cancer cells. Oncol Rep (2012) 27:1835–42. 10.3892/or.2012.1744 PubMed DOI
Minard ME, Kim LS, Price JE, Gallick GE. The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression. Breast Cancer Res Treat (2004) 84:21–32. 10.1023/B:BREA.0000018421.31632.e6 PubMed DOI
Sanmartín E, Yáñez Y, Fornés-Ferrer V, Zugaza JL, Cañete A, Castel V, et al. . TIAM1 variants improve clinical outcome in neuroblastoma. Oncotarget (2017) 8:45286–97. 10.18632/oncotarget.16787 PubMed DOI PMC
Shi YL, Miao RZ, Cheng L, Guo XB, Yang B, Jing CQ, et al. . Up-regulation of T-lymphoma and metastasis gene 1 in gastric cancer and its involvement in cell invasion and migration. Chin Med J (Engl) (2013) 126:640–5. 10.3760/cma.j.issn.0366-6999.20122167 PubMed DOI
Worthylake DK, Rossman KL, Sondek J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature (2000) 408:682–8. 10.1038/35047014 PubMed DOI
Couthouis J, Hart MP, Erion R, King OD, Diaz Z, Nakaya T, et al. . Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet (2012) 21:2899–911. 10.1093/hmg/dds116 PubMed DOI PMC
Ribadeneyra C, Amin S. EWSR1 potentially functions as an RNA chaperone in the stress response. FASEB J (2016) 30:594.3–3. 10.1096/fasebj.30.1_supplement.594.3 DOI
Paronetto MP, Minana B, Valcarcel J. The Ewing sarcoma protein regulates DNA damage-induced alternative splicing. Mol Cell (2011) 43:353–68. 10.1016/j.molcel.2011.05.035 PubMed DOI
Wang X, Zeng L, Wang J, Chau JF, Lai KP, Jia D, et al. . A positive role for c-Abl in Atm and Atr activation in DNA damage response. Cell Death Differ (2011) 18:5–15. 10.1038/cdd.2010.106 PubMed DOI PMC