Conformationally Mobile Acyclic Cucurbit[n]uril-Type Receptors Derived from an S-shaped Methylene Bridged Glycoluril Pentamer
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 CA168365
NCI NIH HHS - United States
R01 GM132345
NIGMS NIH HHS - United States
PubMed
33731981
PubMed Central
PMC7961848
DOI
10.1080/10610278.2020.1795173
Knihovny.cz E-zdroje
- Klíčová slova
- acyclic cucurbituril, foldamer, isothermal titration calorimetry, molecular recognition,
- Publikační typ
- časopisecké články MeSH
We report the synthesis of the conformationally mobile S-shaped glycoluril pentamer building block 3a and two new acyclic CB[n]-type receptors P1 and P2. P1 (9 mM) and P2 (11 mM) have moderate aqueous solubility but their host•guest complexes are poorly soluble. Host P1 does not undergo intermolecular self-association whereas P2 does (Ks = 189±27 M-1). 1H NMR titrations show that P1 and P2 are poor hosts toward hydrophobic (di)cations 6 - 11 (P1: Ka = 375-1400 M-1; P2: Ka = 1950-19800 M-1) compared to Tet1 and Tet2 (Tet1: Ka = 3.09 × 106 to 4.69 × 108 M-1; Tet2: Ka = 4.59 × 108 to 1.30 × 1010 M-1). Molecular modelling shows that P1 and P2 exist as a mixture of three different conformers due to the two S-shaped methylene bridged glycoluril dimer subunits that each possess two different conformations. The lowest energy conformers of P1 and P2 do not feature a well-defined central cavity. In the presence of guests, P2 adapts its conformation to form 1:1 P2•guest complexes; the binding free energy pays the energetic price of conformer selection. This energetically unfavorable conformer selection results in significantly decreased Ka values of P1 and P2 compared to Tet1 and Tet2.
Zobrazit více v PubMed
) Kim J; Jung I-S; Kim S-Y; Lee E; Kang J-K; Sakamoto S; Yamaguchi K; Kim KJ Am. Chem. Soc 2000, 122, 540–541;
Day AI; Arnold AP; Blanch RJ; Snushall BJ Org. Chem 2001, 66, 8094–8100; PubMed
Day AI; Blanch RJ; Arnold AP; Lorenzo S; Lewis GR; Dance I Angew. Chem. Int. Ed 2002, 41, 275–277; PubMed
Liu S; Zavalij PY; Isaacs LJ Am. Chem. Soc 2005, 127, 16798–16799; PubMed PMC
Cheng X-J; Liang L-L; Chen K; Ji N-N; Xiao X; Zhang J-X; Zhang Y-Q; Xue S-F; Zhu Q-J; Ni X-L; Tao Z Angew. Chem. Int. Ed 2013, 52, 7252–7255. PubMed
) Freeman WA; Mock WL; Shih N-YJ Am. Chem. Soc 1981, 103, 7367–7368;
Lee JW; Samal S; Selvapalam N; Kim H-J; Kim K Acc. Chem. Res 2003, 36, 621–630. PubMed
) Mock WL; Shih N-YJ Org. Chem 1986, 51, 4440–4446.
) Liu S; Ruspic C; Mukhopadhyay P; Chakrabarti S; Zavalij PY; Isaacs LJ Am. Chem. Soc 2005, 127, 15959–15967; PubMed
Rekharsky MV; Mori T; Yang C; Ko YH; Selvapalam N; Kim H; Sobransingh D; Kaifer AE; Liu S; Isaacs L; Chen W; Moghaddam S; Gilson MK; Kim K; Inoue Y Proc. Natl. Acad. Sci. U. S. A 2007, 104, 20737–20742; PubMed PMC
Cao L; Sekutor M; Zavalij PY; Mlinaric-Majerski K; Glaser R; Isaacs L Angew. Chem. Int. Ed 2014, 53, 988–993; PubMed
Jeon WS; Moon K; Park SH; Chun H; Ko YH; Lee JY; Lee ES; Samal S; Selvapalam N; Rekharsky MV; Sindelar V; Sobransingh D; Inoue Y; Kaifer AE; Kim KJ Am. Chem. Soc 2005, 127, 12984–12989. PubMed
) Biedermann F; Uzunova VD; Scherman OA; Nau WM; De Simone AJ Am. Chem. Soc 2012, 134, 15318–15323; PubMed
Biedermann F; Nau WM; Schneider H-J Angew. Chem. Int. Ed 2014, 53, 11158–11171; PubMed
Nau WM; Florea M; Assaf KI Isr. J. Chem 2011, 51, 559–577.
) Isaacs L Acc. Chem. Res 2014, 47, 2052–2062; PubMed PMC
Del Barrio J; Horton P; Lairez D; Lloyd G; Toprakcioglu C; Scherman OJ Am. Chem. Soc 2013, 135, 11760–11763; PubMed
del Barrio J; Ryan STJ; Jambrina PG; Rosta E; Scherman OA J. Am. Chem. Soc 2016, 138, 5745–5748. PubMed
) Ko YH; Kim E; Hwang I; Kim K Chem. Commun 2007, 1305–1315. PubMed
) Ghale G; Nau WM Acc. Chem. Res 2014, 47, 2150–2159; PubMed
Barrow SJ; Kasera S; Rowland MJ; del Barrio J; Scherman OA Chem. Rev 2015, 115, 12320–12406; PubMed
Masson E; Ling X; Joseph R; Kyeremeh-Mensah L; Lu X RSC Adv. 2012, 2, 1213–1247;
Wheate NJ; Limantoro C Supramol. Chem 2016, 28, 849–856.
) Park KM; Murray J; Kim K Acc. Chem. Res 2017, 50, 644–646; PubMed
Kim E; Kim D; Jung H; Lee J; Paul S; Selvapalam N; Yang Y; Lim N; Park CG; Kim K Angew. Chem., Int. Ed 2010, 49, 4405–4408; PubMed
Cao L; Hettiarachchi G; Briken V; Isaacs L Angew. Chem. Int. Ed 2013, 52, 12033–12037; PubMed PMC
Chen H; Ma H; Tan YJ Polym. Sci., Part A: Polym. Chem 2015, 53, 1748–1752;
Yeom J; Kim SJ; Jung H; Namkoong H; Yang J; Hwang BW; Oh K; Kim K; Sung YC; Hahn SK Adv. Healthcare Mater 2015, 4, 237–244; PubMed
Webber MJ; Appel EA; Vinciguerra B; Cortinas AB; Thapa LS; Jhunjhunwala S; Isaacs L; Langer R; Anderson DG Proc. Natl. Acad. Sci. U. S. A 2016, 113, 14189–14194; PubMed PMC
Zou L; Braegelman AS; Webber MJ ACS Cent. Sci 2019, 5, 1035–1043; PubMed PMC
Chen H; Huang Z; Wu H; Xu J-F; Zhang X Angew. Chem., Int. Ed 2017, 56, 16575–16578; PubMed
Samanta SK; Quigley J; Vinciguerra B; Briken V; Isaacs LJ Am. Chem. Soc 2017, 139, 9066–9074; PubMed PMC
Sasmal R; Das Saha N; Pahwa M; Rao S; Joshi D; Inamdar MS; Sheeba V; Agasti SS Anal. Chem 2018, 90, 11305–11314; PubMed PMC
Sun C; Zhang H; Li S; Zhang X; Cheng Q; Ding Y; Wang L-H; Wang R ACS Appl. Mater. Interfaces 2018, 10, 25090–25098. PubMed
) Witt D; Lagona J; Damkaci F; Fettinger JC; Isaacs L Org. Lett 2000, 2, 755–758; PubMed
Chakraborty A; Wu A; Witt D; Lagona J; Fettinger JC; Isaacs LJ Am. Chem. Soc 2002, 124, 8297–8306; PubMed
Lagona J; Fettinger JC; Isaacs L Org. Lett 2003, 5, 3745–3747. PubMed
) Wu A; Chakraborty A; Witt D; Lagona J; Damkaci F; Ofori MA; Chiles JK; Fettinger JC; Isaacs LJ Org. Chem 2002, 67, 5817–5830. PubMed
) Stancl M; Hodan M; Sindelar V Org. Lett 2009, 11, 4184–4187. PubMed
) Stancl M; Gargulakova Z; Sindelar VJ Org. Chem 2012, 77, 10945–10948. PubMed
) Huang W-H; Zavalij PY; Isaacs LJ Am. Chem. Soc 2008, 130, 8446–8454. PubMed
) Isaacs L; Park S-K; Liu S; Ko YH; Selvapalam N; Kim Y; Kim H; Zavalij PY; Kim G-H; Lee H-S; Kim KJ Am. Chem. Soc 2005, 127, 18000–18001. PubMed
) Ganapati S; Isaacs L Isr. J. Chem 2018, 58, 250–263. PubMed PMC
) Stancl M; Gilberg L; Ustrnul L; Necas M; Sindelar V Supramol. Chem 2014, 26, 168–172.
) Lu X; Samanta SK; Zavalij PY; Isaacs L Angew. Chem., Int. Ed 2018, 57, 8073–8078; PubMed
Mao D; Liang Y; Liu Y; Zhou X; Ma J; Jiang B; Liu J; Ma D Angew. Chem. Int. Ed 2017, 41, 12614–12618; PubMed
Jiang S; Lan S; Mao D; Yang X; Shi K; Ma D Chem. Commun 2018, 54, 9486–9489; PubMed
Mao W; Mao D; Yang F; Ma D Chem. - Eur. J 2019, 25, 2272–2280; PubMed
Bauer D; Andrae B; Gass P; Trenz D; Becker S; Kubik S Org. Chem. Front 2019, Ahead of Print.
) Ma D; Zhang B; Hoffmann U; Sundrup MG; Eikermann M; Isaacs L Angew. Chem. Int. Ed 2012, 51, 11358–11362. PubMed
) Hoffmann U; Grosse-Sundrup M; Eikermann-Haerter K; Zaremba S; Ayata C; Zhang B; Ma D; Isaacs L; Eikermann M Anesthesiology 2013, 119, 317–325; PubMed
Haerter F; Simons JCP; Foerster U; Moreno Duarte I; Diaz-Gil D; Ganapati S; Eikermann-Haerter K; Ayata C; Zhang B; Blobner M; Isaacs L; Eikermann M Anesthesiology 2015, 123, 1337–1349. PubMed PMC
) Ganapati S; Grabitz SD; Murkli S; Scheffenbichler F; Rudolph MI; Zavalij PY; Eikermann M; Isaacs L ChemBioChem 2017, 18, 1583–1588. PubMed PMC
) Zhang X; Xu X; Li S; Li L; Zhang J; Wang R Theranostics 2019, 9, 633. PubMed PMC
) Gilberg L; Zhang B; Zavalij PY; Sindelar V; Isaacs L Org. Biomol. Chem 2015, 13, 4041–4050. PubMed PMC
) Ma D; Hettiarachchi G; Nguyen D; Zhang B; Wittenberg JB; Zavalij PY; Briken V; Isaacs L Nat. Chem 2012, 4, 503–510. PubMed
) Sijbesma RP; Kentgens APM; Lutz ETG; van der Maas JH; Nolte RJM J. Am. Chem. Soc 1993, 115, 8999–9005.
) Rowan AE; Elemans JAAW; Nolte RJM Acc. Chem. Res 1999, 32, 995–1006;
Wu A; Chakraborty A; Fettinger JC; Flowers RA II; Isaacs L Angew. Chem. Int. Ed 2002, 41, 4028–4031; PubMed
Burnett CA; Witt D; Fettinger JC; Isaacs LJ Org. Chem 2003, 68, 6184–6191. PubMed
) Wu F; Wu L-H; Xiao X; Zhang Y-Q; Xue S-F; Tao Z; Day AI J. Org. Chem 2012, 77, 606–611; PubMed
Zhao Y; Mandadapu V; Iranmanesh H; Beves JE; Day AI Org. Lett 2017, 19, 4034–4037. PubMed
) Diederich F Angew. Chem., Intl. Ed. Engl 1988, 27, 362–386.
) Isaacs L; Witt D; Fettinger JC Chem. Commun 1999, 2549–2550;
Wu A; Mukhopadhyay P; Chakraborty A; Fettinger JC; Isaacs LJ Am. Chem. Soc 2004, 126, 10035–10043. PubMed
) Zhang B; Isaacs LJ Med. Chem 2014, 57, 9554–9563. PubMed PMC
) Hibbert DB; Thordarson P Chem. Commun 2016, 52, 12792–12805. PubMed
) Xue W; Zavalij PY; Isaacs L Org. Biomol. Chem 2019, 17, 5561–5569. PubMed PMC
) Wiseman T; Williston S; Brandts JF; Lin L-N Anal. Biochem 1989, 179, 131–137; PubMed
Broecker J; Vargas C; Keller S Anal. Biochem 2011, 418, 307–309. PubMed
) Velazquez-Campoy A; Freire E Nat. Protocols 2006, 1, 186–191. PubMed
) Brandenburg JG; Bannwarth C; Hansen A; Grimme SJ Chem. Phys 2018, 148, 064104. PubMed
) Marenich AV; Cramer CJ; Truhlar DG J. Phys. Chem. B 2009, 113, 6378–6396. PubMed
) Adamo C; Barone VJ Chem. Phys 1999, 110, 6158–6170;
Weigend F; Ahlrichs R PhysChemChemPhys 2005, 7, 3297–3305; PubMed
Grimme S; Ehrlich S; Goerigk LJ Comput. Chem 2011, 32, 1456–1465. PubMed
) Neese F WIREs Comput. Mol. Sci 2012, 2, 73–78.
) Case DA; Babin V; Berryman JT; Betz RM; Cai Q; Cerutti DS; Cheatham III TE; Darden TA; Duke RE; Gohlke H; Goetz AW; Gusarov S; Homeyer N; Janowski P; Kaus J; Kolossváry I; Kovalenko A; Lee TS; LeGrand S; Luchko T; Luo R; Madej B; Merz KM; Paesani F; Roe DR; Roitberg A; Sagui C; Salomon-Ferrer R; Seabra G; Simmerling CL; Smith W; Swails J; Walker RC; Wang J; Wolf RM; Wu X; Kollman PA; University of California: 2016.
) Wang JM; Wolf RM; Caldwell JW; Kollman PA; Case DA J. Comput. Chem 2004, 25, 1157–1174. PubMed