Persistent Homology Metrics Reveal Quantum Fluctuations and Reactive Atoms in Path Integral Dynamics

. 2021 ; 9 () : 624937. [epub] 20210305

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33748074

Nuclear quantum effects (NQEs) are known to impact a number of features associated with chemical reactivity and physicochemical properties, particularly for light atoms and at low temperatures. In the imaginary time path integral formalism, each atom is mapped onto a "ring polymer" whose spread is related to the quantum mechanical uncertainty in the particle's position, i.e., its thermal wavelength. A number of metrics have previously been used to investigate and characterize this spread and explain effects arising from quantum delocalization, zero-point energy, and tunneling. Many of these shape metrics consider just the instantaneous structure of the ring polymers. However, given the significant interest in methods such as centroid molecular dynamics and ring polymer molecular dynamics that link the molecular dynamics of these ring polymers to real time properties, there exists significant opportunity to exploit metrics that also allow for the study of the fluctuations of the atom delocalization in time. Here we consider the ring polymer delocalization from the perspective of computational topology, specifically persistent homology, which describes the 3-dimensional arrangement of point cloud data, (i.e. atomic positions). We employ the Betti sequence probability distribution to define the ensemble of shapes adopted by the ring polymer. The Wasserstein distances of Betti sequences adjacent in time are used to characterize fluctuations in shape, where the Fourier transform and associated principal components provides added information differentiating atoms with different NQEs based on their dynamic properties. We demonstrate this methodology on two representative systems, a glassy system consisting of two atom types with dramatically different de Broglie thermal wavelengths, and ab initio molecular dynamics simulation of an aqueous 4 M HCl solution where the H-atoms are differentiated based on their participation in proton transfer reactions.

Zobrazit více v PubMed

Adamo C., Barone V. (1999). Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170. 10.1063/1.478522 DOI

Adams H., Emerson T., Kirby M., Neville R., Peterson C., Shipman P., et al. (2017). Persistence images: a stable vector representation of persistent homology. J. Machine Learn. Res. 18, 1–35.

Ahuja R. K., Magnanti T. L., Orlin J. B. (1993). Network flows: theory, algorithms, and applications. London, United Kingdom: Pearson.

Benoit M., Marx D. (2005). The shapes of protons in hydrogen bonds depend on the bond length. Chemphyschem 6, 1738–4110. 10.1002/cphc.200400533 PubMed DOI

Berne B. J., Thirumalai D. (1986). On the simulation of quantum systems: path integral methods. Annu. Rev. Phys. Chem. 37, 401. 10.1146/annurev.pc.37.100186.002153 DOI

Bubenik P. (2015). Statistical topological data analysis using persistence landscapes. J. Machine Learn. Res. 16, 77–102.

Cao J., Voth G. A. (1994). The formulation of quantum statistical mechanics based on the Feynman path centroid density.V.quantum instantaneous normal mode theory of liquids. J. Chem. Phys. 101, 6184. 10.1063/1.468400 DOI

Carlsson G. (2009). Topology and data. Bull. Amer. Math. Soc. 46, 255–308. 10.1090/s0273-0979-09-01249-x DOI

Ceriotti M., Fang W., Kusalik P. G., McKenzie R. H., Michaelides A., Morales M. A., et al. (2016). Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem. Rev . 116, 7529–7550. 10.1021/acs.chemrev.5b00674 PubMed DOI

Cohen-Steiner D., Edelsbrunner H., Harer J. (2007). Stability of persistence diagrams. Discrete Comput. Geom. 37, 103–120. 10.1007/s00454-006-1276-5 DOI

Craig I. R., Manolopoulos D. E. (2004). Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. J. Chem. Phys. 121, 3368. 10.1063/1.1777575 PubMed DOI

Dreschel-Grau C., Marx D. (2014). Quantum simulation of collective proton tunneling in hexagonal ice crystals. Phys. Rev. Lett. 112, 148302. PubMed

Edelsbrunner H., Harer J. L. (2009). Computational topology an introduction. Providence, RI, United States: American Mathematical Society.

Edelsbrunner H., Letscher D., Zomorodian A. (2002). Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533. 10.1007/s00454-002-2885-2 DOI

Fernández-Serra M., Rahman A. (1984). Study of an F center in molten KCl. J. Chem. Phys. 80, 860. 10.1063/1.446740 DOI

Feynman R. P., Hibbs A. R. (1963). Quantum mechanics and path integrals. 1 edn. New York, NY, United States: McGraw-Hill.

Ghrist R. (2007). Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. 45, 61–76. 10.1090/S0273-0979-07-01191-3 DOI

Goerigk L., Grimme S. (2011). A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 13, 6670–6688. 10.1039/C0CP02984J PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104. 10.1063/1.3382344 PubMed DOI

Habershon S., Markland T. E., Manolopoulos D. E. (2009). Competing quantum effects in the dynamics of a flexible water model. J. Chem. Phys. 131, 024501. 10.1063/1.3167790 PubMed DOI

Habershon S., Manolopoulos D. E., Markland T. E., Miller T. F. (2013). Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. Annu. Rev. Phys. Chem. 64, 387–413. 10.1146/annurev-physchem-040412-110122 PubMed DOI

Harada Y., Tokushima T., Horikawa Y., Takahashi O., Niwa H., Kobayashi M., et al. (2013). Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-x-ray scattering. Phys. Rev. Lett. 111, 193001. 10.1103/PhysRevLett.111.193001 PubMed DOI

Ivanov S. D., Grant I. M., Marx D. (2015). Quantum free energy landscapes from ab initio path integral metadynamics: double proton transfer in the formic acid dimer is concerted but not correlated. J. Chem. Phys. 143, 124304. 10.1063/1.4931052 PubMed DOI

Jang S., Voth G. A. (1999). A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables. J. Chem. Phys. 111, 2371. 10.1063/1.479515 DOI

Kawashima Y., Sawada K., Nakajima T., Tachikawa M. (2018). A path integral molecular dynamics study on intermolecular hydrogen bond of acetic acid-arsenic acid anion and acetic acid-phosphoric acid anion clusters. J. Comput. Chem. 40, 172–180. 10.1002/jcc.25562 PubMed DOI

Kim K. H., Pathak H., Spah A., Perakis F., Mariedahl D., Sellberg J. A., et al. (2017). Nuclear quantum effects in water. PRL 119, 075502. 10.1103/physrevlett.119.075502 PubMed DOI

Markland D., Wolynes P. G. (1981). Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids. J. Chem. Phys. 74, 4078. 10.1063/1.441588 DOI

Markland T. E., Morrone J. A., Berne B. J., Miyazaki K., Rabani E., Reichman D. R. (2011). Quantum fluctuations can promote or inhibit glass formation. Nat. Phys. 7, 134–137. 10.1038/nphys1865 DOI

Markland T. E., Morrone J. A., Miyazaki K., Berne B. J., Reichman D., Rabani E. (2012). Theory and simulations of quantum glass forming liquids. J. Chem. Phys. 136, 074511. 10.1063/1.3684881 PubMed DOI

Marsalek O., Markland T. E. (2017). Quantum dynamics and spectroscopy of ab initio liquid water: the interplay of nuclear and electronic quantum effects. J. Phys. Chem. Lett. 8, 1545–1551. 10.1021/acs.jpclett.7b00391 PubMed DOI

Mattice W. L., Suter U. W. (1994). Conformational theory of large molecules. Hoboken, NJ, United States: Wiley-Interscience.

Morrone J. A., Car R. (2008). Nuclear quantum effects in water. Phys. Rev. Lett. 101, 017801. 10.1103/PhysRevLett.101.017801 PubMed DOI

Munkres J. R. (1984). Elements of algebraic topology. Menlo Park, CA, United States: Addison–Wesley Publishing Company.

Napoli J. A., Marsalek O., Markland T. E. (2018). Decoding the spectroscopic features and time scales of aqueous proton defects. J. Chem. Phys. 148, 222833. 10.1063/1.5023704 PubMed DOI

Paesani F., Voth G. A. (2009). The properties of water: insights from quantum simulations. J. Phys. Chem. B. 113, 5702. 10.1021/jp810590c PubMed DOI

Pamuk B., Soler J. M., Ramírez R., Herrero C. P., Stephens P. W., Allen P. B., et al. (2012). Anomalous nuclear quantum effects in ice. Phys. Rev. Lett. 108, 193003. 10.1103/PhysRevLett.108.193003 PubMed DOI

Rossi M., Ceriotti M., Manolopoulos D. E. (2014). How to remove the spurious resonances from ring polymer molecular dynamics. J. Chem. Phys. 140, 234116. 10.1063/1.4883861 PubMed DOI

Rubner Y., Tomasi C., Guibas L. J. (2000). The Earth Mover’s Distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121. 10.1023/A:1026543900054 DOI

Ruiz Pestana L., Marsalek O., Markland T. E., Head-Gordon T. (2018). The quest for accurate liquid water properties from first principles. J. Phys. Chem. Lett. 9, 5009–5016. 10.1021/acs.jpclett.8b02400 PubMed DOI

Schran C., Brieuc F., Marx D. (2018). Converged colored noise path integral molecular dynamics study of the zundel cation down to ultralow temperatures at coupled cluster accuracy. J. Chem. Theor. Comput. 14, 5068–5078. 10.1021/acs.jctc.8b00705 PubMed DOI

Sacher Y., Krishnamoorthy B., Clark A. (2020). Persistent homology computations on atom ring polymers. https://gitlab.com/aurora-clark-public/pershomol_ringpolymers.

Shin E. H., Zygar A., Zeidler M. D. (2001). Isotope effect on the translational and rotational motion in liquid water and ammonia. J. Chem. Phys. 114, 3174. 10.1063/1.1340584 DOI

Skraba P., Turner K. (2020). Wasserstein stability for persistence diagrams, arXiv. 2006. 16824.

Tuckerman M. E., Berne B. J., Martyna G. J., Klein M. L. (1993). Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals. J. Chem. Phys. 99, 2796. 10.1063/1.465188 DOI

Tuckerman M. E. (2010). Statistical mechanics: theory and molecular simulation. Oxford, United Kingdom: Oxford Graduate Texts (Oxford University Press.

Villani C. (2009). Optimal transport old and new. Berlin, Germany: Springer-Verlag Berlin Heidelberg.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...