Isolation of plant nuclei for estimation of nuclear DNA content: Overview and best practices
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
33751820
DOI
10.1002/cyto.a.24331
Knihovny.cz E-resources
- Keywords
- best practices, embryophytes, flow cytometry, genome size, nuclear isolation, nuclear suspensions, plant sciences, ploidy level,
- MeSH
- Staining and Labeling MeSH
- Cell Nucleus * genetics MeSH
- DNA, Plant genetics MeSH
- Ploidies * MeSH
- Flow Cytometry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- DNA, Plant MeSH
A critical aspect for obtaining accurate, reliable, and high-resolution estimates of nuclear DNA content is the release of nuclei from the cytoplasm in sufficient amounts, while maintaining their integrity throughout the analysis, protecting their DNA from degradation by endonucleases, and enabling stoichiometric DNA staining. In embryophytes, the most common method consists of chopping the plant material with a sharp razor blade to release nuclei into an isolation buffer, filtering the homogenate, and staining the nuclei in buffered suspension with a fluorochrome of choice. Despite the recent description of alternative approaches to isolate nuclei, the chopping procedure remains the most widely adopted method, due to its simplicity, rapidity, and effectiveness. In this review article, we discuss the specifics of nuclei isolation buffers and the distorting effects that secondary metabolites may have in nuclear suspensions and how to test them. We also present alternatives to the chopping procedure, options for filtering and fluorochromes, and discuss the applications of these varied approaches. A summary of the best practices regarding the isolation of plant nuclei for the estimation of nuclear DNA content is also provided.
Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
Department of Botany and Biodiversity Research University of Vienna Vienna Austria
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czechia
Department of Integrative Biology University of Guelph Guelph Ontario Canada
See more in PubMed
Galbraith DW. Cytometry and plant sciences: a personal retrospective. Cytom Part A. 2004;58A:37-44.
Heller FO. DNS-Bestimmung an Keimwurzeln von Vicia faba L. mit Hilfe der Impulscytophotometrie. Ber Deut Bot Ges. 1973;86:437-41.
Doležel J, Bartoš J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot. 2005;95:99-110.
Puite KJ, Ten Broeke WRR. DNA staining of fixed and non-fixed plant protoplasts for flow cytometry with Hoechst 33342. Plant Sci Lett. 1983;32:79-88.
Galbraith DW. Flow cytometric analysis of plant genomes. Methods Cell Biol. 1990;33:549-62.
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 1983;220:1049-51.
Bergounioux C, Perennes C, Brown SC, Sarda C, Gadal P. Relation between protoplast division, cell-cycle stage and nuclear chromatin structure. Protoplasma. 1988;142:127-36.
Hülgenhof E, Weidhase RA, Schlegel R, Tewes A. Flow cytometric determination of DNA content in isolated nuclei of cereals. Genome. 1988;30:565-9.
Ulrich I, Ulrich W. High-resolution flow cytometry of nuclear DNA in higher plants. Protoplasma. 1991;165:212-5.
Ulrich I, Fritz B, Ulrich W. Application of DNA fluorochromes for flow cytometric DNA analysis of plant protoplasts. Plant Sci. 1988;55:151-8.
Bergounioux C, Brown SC, Petit PX. Flow cytometry and plant protoplast cell biology. Physiol Plant. 1992;85:374-86.
Loureiro J, Rodriguez E, Doležel J, Santos C. Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot. 2006;98:679-89.
Greilhuber J, Temsch EM, Loureiro JCM. Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Weinheim: Wiley-VCH Verlag; 2007. p. 67-101.
Loureiro J, Suda J, Doležel J, Santos C. FLOWer: a plant DNA flow cytometry database. In: Doležel J, Greilhuber J, Suda J, editors. Flow Cytometry with plant cells: analysis of genes, chromosomes and genomes. Weinheim: Wiley-VCH Verlag; 2007. p. 423-38.
Loureiro J, Rodriguez E, Doležel J, Santos C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot. 2007;100:875-88.
Arumuganathan K, Earle ED. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Report. 1991;9:229-41.
Doležel J, Binarová P, Lucretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant. 1989;31:113-20.
Otto FJ, Oldiges H, Göhde W, Jain VK. Flow cytometric measurement of nuclear DNA content variations as a potential in vivo mutagenicity test. Cytometry. 1981;2:189-91.
Doležel J, Göhde W. Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry. 1995;19:103-6.
Pfosser M, Heberle-Bors E, Amon A, Lelley T. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry. 1995;21:387-93.
Bino RJ, Lanteri S, Verhoeven HA, Kraak HL. Flow cytometric determination of nuclear replication stages in seed tissues. Ann Bot. 1993;72:181-7.
Rayburn AL, Auger JA, Benzinger EA, Hepburn AG. Detection of intraspecific DNA content variation in Zea mays L. by flow cytometry. J Exp Bot. 1989;40:1179-83.
de Laat AMM, Blaas J. Flow-cytometric characterization and sorting of plant chromosomes. Theor Appl Genet. 1984;67:463-7.
Kapuscinski J. DAPI: A DNA-specific fluorescent probe. Biotech Histochem. 1995;70:220-33.
McIlvaine T. A buffer solution for colorimetric comparison. J Biol Chem. 1921;49:183-6.
Šmarda P, Knápek O, Březinová A, Horová L, Grulich V, Danihelka J, et al. Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia. 2019;91:117-42.
Greilhuber J. Severely distorted Feulgen-DNA amounts in Pinus (Coniferophytina) after nonadditive fixations as a result of meristematic self-tanning with vacuole contents. Can J Genet Cytol. 1986;28:409-15.
Noirot M, Barre P, Louarn J, Duperray C, Hamon S. Nucleus-cytosol interactions - a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Ann Bot. 2000;86:309-16.
Price HJ, Hodnett G, Johnston JS. Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot. 2000;86:929-34.
Loureiro J, Rodriguez E, Doležel J, Santos C. Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot. 2006;98:515-27.
Walker DJ, Moñino I, Correal E. Genome size in Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environ Exp Bot. 2006;55:258-65.
Schneider V, Hallier UW. Polyvinylpyrrolidon als Schutzstoff bei der Untersuchung gerbstoffgehemmter Enzymreaktionen. Planta. 1970;94:134-9.
Bharathan G, Lambert G, Galbraith DW. Nuclear DNA content of monocotyledons and related taxa. Am J Bot. 1994;81:381-6.
Yokoya K, Roberts A v, Mottley J, Lewis R, Brandham PE. Nuclear DNA amounts in roses. Ann Bot. 2000;85:557-61.
Noirot M, Barre P, Louarn J, Duperray C, Hamon S. Consequences of stoichiometric error on nuclear DNA content evaluation in Coffea liberica var. dewevrei using DAPI and propidium iodide. Ann Bot. 2002;89:385-9.
Noirot M, Barre P, Duperray C, Louarn J, Hamon S. Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Ann Bot. 2003;92:259-64.
Noirot M, Barre P, Duperray C, Hamon S, de Kochko A. Investigation on the causes of stoichiometric error in genome size estimation using heat experiments: consequences on data interpretation. Ann Bot. 2005;95:111-8.
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2:2233-44.
Bennett MD, Price HJ, Johnston JS. Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot. 2008;101:777-90.
Suda J, Trávníček P. Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry - new prospects for plant research. Cytom Part A. 2006;69:273-80.
Bainard JD, Fazekas AJ, Newmaster SG. Methodology significantly affects genome size estimates: quantitative evidence using bryophytes. Cytom Part A. 2010;77:725-32.
Sliwinska E. Nuclear DNA content analysis of plant seeds by flow cytometry. Curr Protoc Cytom. 2006;35:7.29.1-7.29.13.
Matzk F, Meister A, Brutovská R, Schubert I. Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J. 2001;26:275-82.
Dobeš C, Lückl A, Hülber K, Paule J. Prospects and limits of the flow cytometric seed screen - insights from Potentilla sensu lato (Potentilleae, Rosaceae). New Phytol. 2013;198:605-16.
Mason AS, Nelson MN, Takahira J, Cowling WA, Alves GM, Chaudhuri A, et al. The fate of chromosomes and alleles in an allohexaploid Brassica population. Genetics. 2014;197:273-83.
Roberts AV, Gladis T, Brumme H. DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels. Plant Cell Rep. 2009;28:61-71.
Roberts AV. The use of bead beating to prepare suspensions of nuclei for flow cytometry from fresh leaves, herbarium leaves, petals and pollen. Cytom Part A. 2007;71:1039-44.
Sabara HA, Kron P, Husband BC. Cytotype coexistence leads to triploid hybrid production in a diploid-tetraploid contact zone of Chamerion angustifolium (Onagraceae). Am J Bot. 2013;100:962-70.
Takahira J, Cousin A, Nelson MN, Cowling WA. Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell Tissue Organ Cult. 2011;104:51-9.
Schoft VK, Chumak N, Bindics J, Slusarz L, Twell D, Köhler C, et al. SYBR green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content. Plant Reprod. 2015;28:61-72.
Santos MR, Bispo C, Becker JD. Isolation of Arabidopsis pollen, sperm cells, and vegetative nuclei by fluorescence-activated cell sorting (FACS). In: Schmidt A, editor. Methods in molecular biology. Volume 1669. New York: Humana Press; 2017. p. 193-210.
Kuo LY, Huang YJ, Chang JY, Chiou WL, Huang YM. Evaluating the spore genome sizes of ferns and lycophytes: a flow cytometry approach. New Phytol. 2017;213:1974-83.
Cousin A, Heel K, Cowling WA, Nelson MN. An efficient high-throughput flow cytometric method for estimating DNA ploidy level in plants. Cytom Part A. 2009;75:1015-9.
Kron P, Husband BC. Using flow cytometry to estimate pollen DNA content: improved methodology and applications. Ann Bot. 2012;110:1067-78.
Kron P, Loureiro J, Castro S, Čertner M (2021). Flow cytometric analysis of pollen and spores - an overview of applications and methodology. Cytometry Part A. http://dx.doi.org/10.1002/cyto.a.24330.
Loureiro J, Castro S. The rising world of flow cytometric analysis of pollen grains. Cytom Part A. 2015;87:885-6.
Matzk F. Reproduction mode screening. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Weinheim: Wiley-VCH Verlag; 2007. p. 131-52.
Lee HC, Lin TY. Isolation of plant nuclei suitable for flow cytometry from recalcitrant tissue by use of a filtration column. Plant Mol Biol Report. 2005;23:53-8.
Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant. 1992;85:625-31.
Lepecq JB, Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol. 1967;27:87-106.
Djuzenová CS, Zimmermann U, Frank H, Sukhorukov VL, Richter E, Fuhr G. Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochim Biophys Acta Biomembr. 1996;1284:143-52.
Barre P, Noirot M, Louarn J, Duperray C, Hamon S. Reliable flow cytometric estimation of nuclear DNA content in coffee trees. Cytometry. 1996;24:32-8.
Suda J. An employment of flow cytometry into plant biosystematics. [PhD Thesis]. Prague, Czech Republic. 2004.
Darzynkiewicz Z, Traganos F, Kapuscinski J, Staiano-Coico L, Melamed MR. Accessibility of DNA in situ to various fluorochromes: relationship to chromatin changes during erythroid differentiation of Friend leukaemia cells. Cytometry. 1984;5:355-63.
Darzynkiewicz Z, Traganos F. Unstainable DNA in cell nuclei. Comparison of ten different fluorochromes. Anal Quant Cytol Histol. 1988;10:462-6.
Crissman HA, Oka MS, Steinkamp JA. Rapid staining methods for analysis of deoxyribonucleic acid and protein in mammalian cells. J Histochem Cytochem. 1976;24:64-71.
Doležel J. Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem Anal. 1991;2:143-54.
Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants