Left atrial thickness and acute thermal injury in patients undergoing ablation for atrial fibrillation: Laser versus radiofrequency energies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33760290
DOI
10.1111/jce.15011
Knihovny.cz E-zdroje
- Klíčová slova
- atrial fibrillation, catheter ablation, intracardiac echocardiography, laser balloon ablation,
- MeSH
- fibrilace síní * diagnostické zobrazování chirurgie MeSH
- katetrizační ablace * škodlivé účinky MeSH
- lasery MeSH
- lidé MeSH
- venae pulmonales * diagnostické zobrazování chirurgie MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Thermally induced cardiac lesions result in necrosis, edema, and inflammation. This tissue change may be seen with ultrasound. In this study, we sought to use intracardiac echocardiography (ICE) to evaluate pulmonary vein tissue morphology and assess the acute tissue changes that occur following radiofrequency (RF) or laser ablation for atrial fibrillation (AF). METHODS AND RESULTS: Patients with AF underwent pulmonary vein isolation (PVI) using irrigated RF or laser balloon. Pre- and post-ablation ICE imaging was performed from within each pulmonary vein (PV). At least 10 transverse imaging planes per PV were evaluated and each plane was divided into eight segments. The PV/atrial wall thickness and the luminal area were measured at each segment. Twenty-seven patients underwent PVI (15 with laser, 12 with RF). Ninety-eight pulmonary veins were analyzed (58 PVs laser; 40 PVs RF). At baseline, there were no regional differences in PV wall thickness in the right-sided veins. The anterior regions of left superior pulmonary vein (LSPV) and left inferior pulmonary vein (LIPV) were significantly thicker compared with the posterior and inferior regions (p < .01). Post-ablation, PV wall thickness in RF group increased 24.1% interquartile range (IQR) (17.2%-36.7%) compared with 1.2% IQR (0.4%-8.9%) in laser group, p = .004. In all PVs, RF ablation resulted in significantly greater percent increase in wall thickness compared with laser. Additionally, RF resulted in more variable changes in regional PV wall thickness; with more increases in wall thickness in anterior versus posterior LSPV (75.4 ± 58.5% vs. 46.8 ± 55.6%, p < .01), anterior versus posterior right superior pulmonary vein (RSPV) (62.9 ± 63.9% vs. 44.6 ± 51.7%, p < .05), and superior versus inferior RSPV (69.1 ± 45.4% vs. 35.9 ± 45%, p < .05). There were no significant regional differences in PV wall thickness changes for the laser group. CONCLUSIONS: Rotational ICE can be used to measure acute tissue changes with ablation. Regional variability in baseline wall thickness was nonuniformly present in PVs. Acute tissue changes occurred immediately post-ablation. Compared with laser balloon, RF shows markedly more thickening post-ablation with significant regional variations.
Zobrazit více v PubMed
Haïssaguerre M, Jaïs P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659-666. https://doi.org/10.1056/NEJM199809033391003
January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation. 2014;130(23):e199-e267. https://doi.org/10.1161/CIR.0000000000000041
Oral H, Knight BP, Tada H, et al. Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation. Circulation. 2002;105(9):1077-1081. https://doi.org/10.1161/hc0902.104712
Marrouche NF, Wilber D, Hindricks G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311(5):498-506. https://doi.org/10.1001/jama.2014.3
Akoum N, Daccarett M, McGann C, et al. Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: a DE-MRI guided approach. J Cardiovasc Electrophysiol. 2011;22(1):16-22. https://doi.org/10.1111/j.1540-8167.2010.01876.x
Mahnkopf C, Badger TJ, Burgon NS, et al. Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: implications for disease progression and response to catheter ablation. Heart Rhythm. 2010;7(10):1475-1481. https://doi.org/10.1016/j.hrthm.2010.06.030
Arujuna A, Karim R, Caulfield D, et al. Acute pulmonary vein isolation is achieved by a combination of reversible and irreversible atrial injury after catheter ablation. Circ Arrhythmia Electrophysiol. 2012;5(4):691-700. https://doi.org/10.1161/CIRCEP.111.966523
Granier M, Winum PF, Granier M, et al. Real-time atrial wall imaging during radiofrequency ablation in a porcine model. Heart Rhythm. 2015;12(8):1827-1835. https://doi.org/10.1016/j.hrthm.2015.04.012
Schwartzman D, Michele JJ, Trankiem CT, Ren JF. Electrogram-guided radiofrequency catheter ablation of atrial tissue: comparison with thermometry-guide ablation. J Interv Card Electrophysiol. 2001;5:253-266. https://doi.org/10.1023/A:1011408514531
Dukkipati SR, Neuzil P, Kautzner J, et al. The durability of pulmonary vein isolation using the visually guided laser balloon catheter: multicenter results of pulmonary vein remapping studies. Heart Rhythm. 2012;9(6):919-925. https://doi.org/10.1016/j.hrthm.2012.01.019
Tsyganov A, Petru J, Skoda J, et al. Anatomical predictors for successful pulmonary vein isolation using balloon-based technologies in atrial fibrillation. J Interv Card Electrophysiol. 2015;44:265-271. https://doi.org/10.1007/s10840-015-0068-3
Lemola K, Sneider M, Desjardins B, et al. Computed tomographic analysis of the anatomy of the left atrium and the esophagus: implications for left atrial catheter ablation. Circulation. 2004;110(24):3655-3660. https://doi.org/10.1161/01.CIR.0000149714.31471.FD
Cury RC, Abbara S, Schmidt S, et al. Relationship of the esophagus and aorta to the left atrium and pulmonary veins: implications for catheter ablation of atrial fibrillation. Heart Rhythm. 2005;2(12):1317-1323. https://doi.org/10.1016/j.hrthm.2005.09.012
Nathan H, Eliakim M. The junction between the left atrium and the pulmonary veins: an anatomic study of human hearts. Circulation. 1966;34(3):412-422. https://doi.org/10.1161/01.CIR.34.3.412
Helms A, West JJ, Patel A, et al. Real-time rotational ICE imaging of the relationship of the ablation catheter tip and the esophagus during atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2009;20(2):130-137. https://doi.org/10.1111/j.1540-8167.2008.01277.x
Chu E, Kalman JM, Kwasman MA, et al. Intracardiac echocardiography during radiofrequency catheter ablation of cardiac arrhythmias in humans. J Am Coll Cardiol. 1994;24(5):1351-1357. https://doi.org/10.1016/0735-1097(94)90119-8
Kalman JM, Olgin JE, Karch MR, Lesh MD. Use of intracardiac echocardiography in interventional electrophysiology. Pacing Clin Electrophysiol. 1997;20(9):2248-2262. https://doi.org/10.1111/j.1540-8159.1997.tb04244.x
Ren JF, Schwartzman D, Callans D, Marchlinski FE, Gottlieb CD, Chaudhry FA. Imaging technique and clinical utility for electrophysiologic procedures of lower frequency (9 MHz) intracardiac echocardiography. Am J Cardiol. 1998;82(12):1557-1560. https://doi.org/10.1016/s0002-9149(98)00709-7
Epstein LM, Mitchell MA, Smith TW, Haines DE. Comparative study of fluoroscopy and intracardiac echocardiographic guidance for the creation of linear atrial lesions. Circulation. 1998;98(17):1796-1801. https://doi.org/10.1161/01.CIR.98.17.1796
Morton JB, Sanders P, Byrne MJ, et al. Phased-array intracardiac echocardiography to guide radiofrequency ablation in the left atrium and at the pulmonary vein ostium. J Cardiovasc Electrophysiol. 2001;12(3):343-348. https://doi.org/10.1046/j.1540-8167.2001.00343.x
Mangrum JM, Mounsey JP, Kok LC, DiMarco JP, Haines DE. Intracardiac echocardiography-guided, anatomically based radiofrequency ablation of focal atrial fibrillation originating from pulmonary veins. J Am Coll Cardiol. 2002;39(12):1964-1972. https://doi.org/10.1016/S0735-1097(02)01893-4
Kalman JM, Fitzpatrick AP, Olgin JE, et al. Biophysical characteristics of radiofrequency lesion formation in vivo: dynamics of catheter tip-tissue contact evaluated by intracardiac echocardiography. Am Heart J. 1997;133(1):8-18. https://doi.org/10.1016/S0002-8703(97)70242-4
Cheema A, Dong J, Dalal D, et al. Incidence and time course of early recovery of pulmonary vein conduction after catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18:387-391. https://doi.org/10.1111/j.1540-8167.2007.00760.x
Khurram IM, Catanzaro JN, Zimmerman S, et al. MRI evaluation of radiofrequency, cryothermal, and laser left atrial lesion formation in patients with atrial fibrillation. Pacing Clin Electrophysiol. 2015;38(11):1317-1324. https://doi.org/10.1111/pace.12696
Knowles BR, Caulfield D, Cooklin M, et al. 3-D visualization of acute RF ablation lesions using MRI for the simultaneous determination of the patterns of necrosis and edema. IEEE Trans Biomed Eng. 2010;57(6):1467-1475. https://doi.org/10.1109/TBME.2009.2038791
Figueras i Ventura RM, Mǎrgulescu AD, Benito EM, et al. Postprocedural LGE-CMR comparison of laser and radiofrequency ablation lesions after pulmonary vein isolation. J Cardiovasc Electrophysiol. 2018;29(8):1065-1072. https://doi.org/10.1111/jce.13616
Vergara GR, Marrouche NF. Tailored management of atrial fibrillation using a LGE-MRI based model: from the clinic to the electrophysiology laboratory. J Cardiovasc Electrophysiol. 2011;22(4):481-487. https://doi.org/10.1111/j.1540-8167.2010.01941.x
Brueckmann M, Wolpert C, Bertsch T, et al. Markers of myocardial damage, tissue healing, and inflammation after radiofrequency catheter ablation of atrial tachyarrhythmias. J Cardiovasc Electrophysiol. 2004;15(6):686-691. https://doi.org/10.1046/j.1540-8167.2004.03371.x
Wright M, Harks E, Deladi S, et al. Characteristics of radiofrequency catheter ablation lesion formation in real time in vivo using near field ultrasound imaging. JACC Clin Electrophysiol. 2018;4:1062-1072. https://doi.org/10.1016/j.jacep.2018.04.002
Yamashita K, Ghafoori E, Silvernagel J, et al. The effective contact force to minimize edema relative to chronic lesion formation during radiofrequency ablation in ventricular wall. Int Heart J. 2019;60:1407-1414. https://doi.org/10.1536/ihj.19-128