Injectable hyaluronic acid-based antibacterial hydrogel adorned with biogenically synthesized AgNPs-decorated multi-walled carbon nanotubes

. 2021 Mar ; 10 (1) : 77-89. [epub] 20210326

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33768486
Odkazy

PubMed 33768486
PubMed Central PMC8021662
DOI 10.1007/s40204-021-00155-6
PII: 10.1007/s40204-021-00155-6
Knihovny.cz E-zdroje

Injectable materials have shown great potential in tissue engineering applications. However, bacterial infection is one of the main challenges in using these materials in the field of regenerative medicine. In this study, biogenically synthesized silver nanoparticle-decorated multi-walled carbon nanotubes (Ag/MWCNTs) were deployed for adorning biogenic-derived AgNPs which were subsequently used in the preparation of thermosensitive hydrogels based on hyaluronic acid encompassing these green-synthesized NPs. The antibacterial capacity of AgNPs decorated on MWCNTs synthesized through Camellia sinensis extract in an organic solvent-free medium displayed a superior activity by inhibiting the growth of Gram-negative (E. coli and Klebsiella) and Gram-positive (S. aureus and E. faecalis). The injectable hydrogel nanocomposites demonstrated good mechanical properties, as well. The thermosensitive hyaluronic acid-based hydrogels also exhibited Tgel below the body temperature, indicating the transition from liquid-like behavior to elastic gel-like behavior. Such a promising injectable nanocomposite could be applied as liquid, pomade, or ointment to enter wound cavities or bone defects and subsequently its transition in situ to gel form at human body temperature bodes well for their immense potential application in the biomedical sector.

Erratum v

PubMed

Erratum v

PubMed

Zobrazit více v PubMed

Abbadessa A, Mouser VHM, Blokzijl MM, Gawlitta D, Dhert WJA, Hennink WE, Malda J, Vermonden T. A synthetic thermosensitive hydrogel for cartilage bioprinting and its biofunctionalization with polysaccharides. Biomacromol. 2016;17:2137–2147. doi: 10.1021/acs.biomac.6b00366. PubMed DOI PMC

Akbari R, Noroozifar M, Khorasani-Motlagh M, Taheri A. Simultaneous determination of ascorbic acid and uric acid by a new modified carbon nanotube-paste electrode using chloromercuriferrocene. Anal Sci. 2010;26:425–430. doi: 10.2116/analsci.26.425. PubMed DOI

Al MMS, Islam MF, Hasan MN, Habib A, Sikder MH. Effect of dietary supplementation of ginger on feed conversion ratio, carcass physiognomies and haematological parameters in broiler. Res Agric Livest Fish. 2017;4:173–179. doi: 10.3329/ralf.v4i3.35094. DOI

Ambi A, Parikh N, Vera C, Burns K, Montano N, Sciorra L, Epstein J, Zeng D, Traba C. Anti-infection silver nanoparticle immobilized biomaterials facilitated by argon plasma grafting technology. Biofouling. 2018;34:273–286. doi: 10.1080/08927014.2018.1434158. PubMed DOI

Ashrafizadeh M, Ahmadi Z. Effect of astaxanthin treatment on the sperm quality of the mice treated with nicotine. Rev Clin Med. 2019;6:1–5.

Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials. 2002;23:4503–4513. doi: 10.1016/S0142-9612(02)00194-1. PubMed DOI

Chen P, Wu Z, Leung A, Chen X, Landao-Bassonga E, Gao J, Chen L, Zheng M, Yao F, Yang H, Lidgren L, Allan B, Liu Y, Wang T, Zheng M. Fabrication of a silver nanoparticle-coated collagen membrane with antibacterial and anti-inflammatory activities for guided bone regeneration. Biomed Mater. 2018;13:65014. doi: 10.1088/1748-605X/aae15b. PubMed DOI

Das L. Mechanism of action of Azadirachta Indica Linn. ( Neem) aqueous leaf extract as hypoglycaemic agent. Ind Med Gaz. 2014;1:29–32.

Delfi M, Sartorius R, Ashrafizadeh M, et al. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices andimmunotherapy. Nano Today. 2021;38:101119. doi: 10.1016/j.nantod.2021.101119. PubMed DOI PMC

Dessi M, Borzacchiello A, Mohamed THA, Abdel-Fattah WI, Ambrosio L. Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. J Biomed Mater Res Part A. 2013;101:2984–2993. doi: 10.1002/jbm.a.34592. PubMed DOI

Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C. 2016;58:36–43. doi: 10.1016/j.msec.2015.08.018. PubMed DOI

Durak S, Arasoglu T, Ates SC, Derman S. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology. 2020;31:175705. doi: 10.1088/1361-6528/ab6ab9. PubMed DOI

Ebbesen TW. Decoration of carbon nanotubes. Adv Mater. 1996;8:155–157. doi: 10.1002/adma.19960080212. DOI

Feng Y, Zhang J, Wen C, Sedem Dzah C, Chidimma Juliet I, Duan Y, Zhang H. Recent advances in Agaricus bisporus polysaccharides: extraction, purification, physicochemical characterization and bioactivities. Process Biochem. 2020;94:39–50. doi: 10.1016/j.procbio.2020.04.010. DOI

Guo L, Wang H, Wang Y, Liu F, Feng L. Organic polymer nanoparticles with primary ammonium salt as potent antibacterial nanomaterials. ACS Appl Mater Interfaces. 2020;12:21254–21262. doi: 10.1021/acsami.9b19921. PubMed DOI

Hamouda HI, Abdel-Ghafar HM, Mahmoud MHH (2021) Multi-walled carbon nanotubes decorated with silver nanoparticles for antimicrobial applications. J Environ Chem Eng 105034

Hebbalalu D, Lalley J, Nadagouda MN, Varma RS. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng. 2013;1:703–712. doi: 10.1021/sc4000362. DOI

Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS. Degradation of bromothymol blue by “greener” nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem. 2009;19:8671–8677. doi: 10.1039/b909148c. DOI

Jamaledin R, Yiu CKY, Zare EN, Niu L, Vecchione R, Chen G, Gu Z, Tay FR, Makvandi P. Advances in antimicrobial microneedle patches for combating infections. Adv Mater. 2020;32:2002129. doi: 10.1002/adma.202002129. PubMed DOI

Ju C, Sun J, Zi P, Jin X, Zhang C. Thermosensitive micelles–hydrogel hybrid system based on poloxamer 407 for localized delivery of paclitaxel. J Pharm Sci. 2013;102:2707–2717. doi: 10.1002/jps.23649. PubMed DOI

Kablik J, Monheit GD, Yu L, Chang G, Gershkovich J. Comparative physical properties of hyaluronic acid dermal fillers. Dermatologic Surg. 2009;35:302–312. doi: 10.1111/j.1524-4725.2008.01046.x. PubMed DOI

Kant V, Gopal A, Kumar D, Gopalkrishnan A, Pathak NN, Kurade NP, Tandan SK, Kumar D. Topical pluronic F-127 gel application enhances cutaneous wound healing in rats. Acta Histochem. 2014;116:5–13. doi: 10.1016/j.acthis.2013.04.010. PubMed DOI

Khalil EA, Afifi FU, Al-Hussaini M. Evaluation of the wound healing effect of some Jordanian traditional medicinal plants formulated in Pluronic F127 using mice (Mus musculus) J Ethnopharmacol. 2007;109:104–112. doi: 10.1016/j.jep.2006.07.010. PubMed DOI

Khatami M, Varma RS, Heydari M, Peydayesh M, Sedighi A, Agha Askari H, Rohani M, Baniasadi M, Arkia S, Seyedi F, Khatami S. Copper oxide nanoparticles greener synthesis using tea and its antifungal efficiency on fusarium solani. Geomicrobiol J. 2019;36:777–781. doi: 10.1080/01490451.2019.1621963. DOI

Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green-synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomed. 2018;13:8013. doi: 10.2147/IJN.S189295. PubMed DOI PMC

Li ZW, Li CW, Wang Q, Shi SJ, Hu M, Zhang Q, Cui HH, Bin SJ, Zhou M, Wu GL, Dang JZ, Lu LC. The cellular and molecular mechanisms underlying silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber-mediated wound healing. J Biomed Nanotechnol. 2017;13:17–34. doi: 10.1166/jbn.2017.2324. PubMed DOI

Li J, Zhong W, Zhang K, Wang D, Hu J, Chan-Park MB. Biguanide-derived polymeric nanoparticles Kill MRSA biofilm and suppress infection in vivo. ACS Appl Mater Interfaces. 2020;12:21231–21241. doi: 10.1021/acsami.9b17747. PubMed DOI

Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydr Polym. 2019;223:115023. doi: 10.1016/j.carbpol.2019.115023. PubMed DOI

Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A. Hyaluronic acid/corn silk extract based injectable nanocomposite: a biomimetic antibacterial scaffold for bone tissue regeneration. Mater Sci Eng C. 2019;107:10195. doi: 10.1016/j.msec.2019.110195. PubMed DOI

Makvandi P, Ghomi M, Padil VVT, Shalchy F, Ashrafizadeh M, Askarinejad S, Pourreza N, Zarrabi A, Nazarzadeh Zare E, Kooti M, Mokhtari B, Borzacchiello A, Tay FR. Biofabricated nanostructures and their composites in regenerative medicine. ACS Appl Nano Mater. 2020;3:6210–6238. doi: 10.1021/acsanm.0c01164. DOI

Makvandi P, Wang C, Zare EN, Borzacchiello A, Niu L, Tay FR. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Adv Funct Mater. 2020;30:1910021. doi: 10.1002/adfm.201910021. DOI

Makvandi P, Baghbantaraghdari Z, Zhou W, Zhang Y, Manchanda R, Agarwal T, Wu A, Maiti TK, Varma RS, Smith BR. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnol Adv. 2021 doi: 10.1016/j.biotechadv.2021.107711. PubMed DOI

Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A. Drug delivery (nano) platforms for oral and dental applications: tissue regeneration, infection control, and cancer management. Adv Sci. 2012 doi: 10.1002/advs.202004014. PubMed DOI PMC

Makvandi P, Baghbantaraghdari Z, Zhou W, et al. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnol Adv. 2021 doi: 10.1016/j.biotechadv.2021.107711. PubMed DOI

Makvandi P, Josic U, Delfi M, et al. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. Adv Sci. 2021 doi: 10.1002/advs.202004014. PubMed DOI PMC

Markova Z, Novak P, Kaslik J, Plachtova P, Brazdova M, Jancula D, Siskova KM, Machala L, Marsalek B, Zboril R, Varma R (2014) Iron(II,III)-polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact. In: ACS Sustainable Chemistry and Engineering. ACS Publications, pp 1674–1680

Mayol L, Quaglia F, Borzacchiello A, Ambrosio L, La Rotonda MI. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur J Pharm Biopharm. 2008;70:199–206. doi: 10.1016/j.ejpb.2008.04.025. PubMed DOI

Mayol L, Biondi M, Quaglia F, Fusco S, Borzacchiello A, Ambrosio L, La Rotonda MI. Injectable thermally responsive mucoadhesive gel for sustained protein delivery. Biomacromol. 2011;12:28–33. doi: 10.1021/bm1008958. PubMed DOI

Mirzahosseinipour M, Khorsandi K, Hosseinzadeh R, Ghazaeian M, Shahidi FK. Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagnosis Photodyn Ther. 2020;29:101639. doi: 10.1016/j.pdpdt.2019.101639. PubMed DOI

Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M. Berberine as a potential autophagy modulator. J Cell Physiol. 2019;234:14914–14926. doi: 10.1002/jcp.28325. PubMed DOI

Mohammadinejad R, Shavandi A, Raie DS, Sangeetha J, Soleimani M, Hajibehzad SS, Thangadurai D, Hospet R, Popoola JO, Arzani A. Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem. 2019;21:1845–1865. doi: 10.1039/C9GC00335E. DOI

Mohseni-Dargah M, Akbari-Birgani S, Madadi Z, Saghatchi F, Kaboudin B. Carbon nanotube-delivered iC9 suicide gene therapy for killing breast cancer cells in vitro. Nanomedicine. 2019;14:1033–1047. doi: 10.2217/nnm-2018-0342. PubMed DOI

Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS. Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale. 2010;2:763–770. doi: 10.1039/c0nr00046a. PubMed DOI

Murugesan B, Pandiyan N, Kasinathan K, Rajaiah A, Arumuga M, Subramanian P, Sonamuthu J, Samayanan S, Arumugam VR, Marimuthu K, Yurong C, Mahalingam S. Fabrication of heteroatom doped NFP-MWCNT and NFB-MWCNT nanocomposite from imidazolium ionic liquid functionalized MWCNT for antibiofilm and wound healing in Wistar rats: synthesis, characterization, in vitro and in-vivo studies. Mater Sci Eng C. 2020;111:110791. doi: 10.1016/j.msec.2020.110791. PubMed DOI

Nadagouda MN, Varma RS. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10:859–862. doi: 10.1039/b804703k. DOI

Nadagouda MN, Castle AB, Murdock RC, Hussain SM, Varma RS. In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem. 2010;12:114–212. doi: 10.1039/b921203p. DOI

Nishitani E, Sagesaka YM. Simultaneous determination of catechins, caffeine and other phenolic compounds in tea using new HPLC method. J Food Compos Anal. 2004;17:675–685. doi: 10.1016/j.jfca.2003.09.009. DOI

Noman Z, Hasan M, Talukder S, Sarker Y, Paul T, Sikder M. Effects of garlic extract on growth, carcass characteristics and haematological parameters in broilers. Bangladesh Vet. 2016;32:1–6. doi: 10.3329/bvet.v32i1.29250. DOI

Onitsuka S, Hamada T, Okamura H. Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloids Surfaces B Biointerfaces. 2019;173:242–248. doi: 10.1016/j.colsurfb.2018.09.055. PubMed DOI

Pang J, Zhang Z, Zheng TZ, Bassig BA, Mao C, Liu X, Zhu Y, Shi K, Ge J, Yang YJ, Dejia-Huang BM, Peng Y. Green tea consumption and risk of cardiovascular and ischemic related diseases: a meta-analysis. Int J Cardiol. 2016;202:967–974. doi: 10.1016/j.ijcard.2014.12.176. PubMed DOI

Pastoriza S, Mesías M, Cabrera C, Rufián-Henares JA. Healthy properties of green and white teas: An update. Food Funct. 2017;8:2650–2662. doi: 10.1039/C7FO00611J. PubMed DOI

Patra JK, Baek K-H. Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater. 2014;2014:219. doi: 10.1155/2014/417305. DOI

Pattabi M, Uchil J. Synthesis of cadmium sulphide nanoparticles. Sol Energy Mater Sol Cells. 2000;63:309–314. doi: 10.1016/S0927-0248(00)00050-7. DOI

Plachtová P, Medříková Z, Zbořil R, Tuček J, Varma RS, Maršálek B. Iron and iron oxide nanoparticles synthesized with green tea extract: differences in ecotoxicological profile and ability to degrade Malachite Green. ACS Sustain Chem Eng. 2018;6:8679–8687. doi: 10.1021/acssuschemeng.8b00986. PubMed DOI PMC

Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A review of the role of green tea (camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients. 2019;11:474. doi: 10.3390/nu11020474. PubMed DOI PMC

Saeednia L, Yao L, Cluff K, Asmatulu R. Sustained releasing of methotrexate from injectable and thermosensitive chitosan-carbon nanotube hybrid hydrogels effectively controls tumor cell growth. ACS Omega. 2019;4:4040–4048. doi: 10.1021/acsomega.8b03212. PubMed DOI PMC

Seo Y, Hwang J, Kim J, Jeong Y, Hwang MP, Choi J. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int J Nanomedicine. 2014;9:4621. PubMed PMC

Shao W, Liu X, Min H, Dong G, Feng Q, Zuo S. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl Mater Interfaces. 2015;7:6966–6973. doi: 10.1021/acsami.5b00937. PubMed DOI

Sharma V, Gulati A, Ravindranath SD, Kumar V. A simple and convenient method for analysis of tea biochemicals by reverse phase HPLC. J Food Compos Anal. 2005;18:583–594. doi: 10.1016/j.jfca.2004.02.015. DOI

Shim WS, Yoo JS, Bae YH, Lee DS. Novel injectable pH and temperature-sensitive block copolymer hydrogel. Biomacromol. 2005;6:2930–2934. doi: 10.1021/bm050521k. PubMed DOI

Sobhani B, Roomiani S, Ahmadi Z, Ashrafizadeh M. Histopathological analysis of testis: effects of astaxanthin treatment against nicotine toxicity. Iran J Toxicol. 2019;13:41–44.

Varma RS. Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng. 2012;1:123–128. doi: 10.1016/j.coche.2011.12.002. DOI

Verma D, Chauhan D, Mukherjee M Das, Ranjan KR, Yadav AK, Solanki PR (2021) Development of MWCNT decorated with green-synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA. J Appl Electrochem 1–16

Wang C, Makvandi P, Zare EN, Tay FR, Niu L. Advances in a organic and inorganic nanocompounds in biomedicine. Adv Ther. 2020;3:2000024. doi: 10.1002/adtp.202000024. DOI

Yu S, Zhang D, He C, Sun W, Cao R, Cui S, Deng M, Gu Z, Chen X. Injectable thermosensitive polypeptide-based CDDP-complexed hydrogel for improving localized antitumor efficacy. Biomacromol. 2017;18:4341–4348. doi: 10.1021/acs.biomac.7b01374. PubMed DOI

Yu S, Zhang YI, Chen L, Li Q, Du J, Gao Y, Zhang L, Yang Y. Antitumor effects of carbon nanotube-drug complex against human breast cancer cells. Exp Ther Med. 2018;16:1103–1110. doi: 10.3892/etm.2018.6334. PubMed DOI PMC

Zare EN, Makvandi P, Tay FR. Recent progress in the industrial and biomedical applications of tragacanth gum. Carbohydr Polym. 2019;212:450–467. doi: 10.1016/J.CARBPOL.2019.02.076. PubMed DOI

Zare EN, Padil VVT, Mokhtari B, Venkateshaiah A, Wacławek S, Černík M, Tay FR, Varma RS, Makvandi P. Advances in biogenically synthesized shaped metal-and carbon-based nanoarchitectures and their medicinal applications. Adv Colloid Interface Sci. 2020;283:102236. doi: 10.1016/j.cis.2020.102236. PubMed DOI

Zare-Zardini H, Shanbedi M, Soltaninejad H, Mohammadzadeh M, Amiri A, Hamidieh AA, Ferdosian F, Alemi A, Hosseinkhani S, Fesahat F, Astani A. The effect of temperature and acidity on antimicrobial activities of pristine MWCNTs and MWCNTs-Arg. Int J Nanosci Nanotechnol. 2020;16:127–136.

Zhen JB, Kang PW, Zhao MH, Yang KW. Silver nanoparticle conjugated star PCL-b-AMPs copolymer as nanocomposite exhibits efficient antibacterial properties. Bioconjug Chem. 2020;31:51–63. doi: 10.1021/acs.bioconjchem.9b00739. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...