The chemical compound 'Heatin' stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1-subfamily of nitrilases
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
616449
H2020 European Research Council
258413
H2020 European Research Council
Swedish Research Council
831.13.002
Netherlands Organisation for Scientific research (NWO)
INST 20876/127-1
Deutsche Forschungsgemeinschaft (DFG)
BB/R017913/1
BBSRC
BB/S003193/1
BBSRC
Swedish Metabolomics Centre for the Use of Instrumentation
Knut and Alice Wallenberg Foundation (KAW)
CZ.02.1.01/0.0/0.0/16_019/0000827
Ministry of Education Youth and Sports of the Czech Republic
Swedish Foundation for Strategic Research
PubMed
33768644
PubMed Central
PMC8360157
DOI
10.1111/tpj.15250
Knihovny.cz E-zdroje
- Klíčová slova
- 1-iminomethyl-2-naphthol, Arabidopsis, Heatin, IAN, NIT1-subfamily, PIF4, aldehyde oxidase, chemical genetics, indole-3-acetonitrile, nitrilases, thermomorphogenesis,
- MeSH
- aldehydoxidasa genetika metabolismus MeSH
- aminohydrolasy genetika metabolismus MeSH
- apomorfin analogy a deriváty farmakologie MeSH
- Arabidopsis účinky léků růst a vývoj MeSH
- herbicidy farmakologie MeSH
- hypokotyl účinky léků růst a vývoj MeSH
- inhibitory enzymů aplikace a dávkování chemie farmakologie MeSH
- kyseliny indoloctové MeSH
- molekulární struktura MeSH
- pikloram farmakologie MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- transkriptom účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 10,11-dihydroxy-N-n-propylnorapomorphine MeSH Prohlížeč
- AAO1 protein, Arabidopsis MeSH Prohlížeč
- aldehydoxidasa MeSH
- aminohydrolasy MeSH
- apomorfin MeSH
- herbicidy MeSH
- inhibitory enzymů MeSH
- kyseliny indoloctové MeSH
- nitrilase MeSH Prohlížeč
- pikloram MeSH
- proteiny huseníčku MeSH
Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2-deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound 'Heatin', containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.
Bejo Zaden B 5 Trambaan 1 Warmenhuizen 1749 CZ the Netherlands
Keygene Agro Business Park 90 Wageningen 6708 PW the Netherlands
Zobrazit více v PubMed
Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P.et al. (2003) Genome‐wide insertional mutagenesis of Arabidopsis thaliana . Science, 301, 653–657. PubMed
Anders, S. & Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biology, 11, R106. PubMed PMC
Anders, S., Pyl, P.T. & Huber, W. (2015) HTSeq—a Python framework to work with high‐throughput sequencing data. Bioinformatics, 31, 166–169. PubMed PMC
Boonsirichai, K., Guan, C., Chen, R. & Masson, P.H. (2002) ROOT GRAVITROPISM: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annual Review of Plant Biology, 53, 421–447. PubMed
Böttcher, C., Chapman, A., Fellermeier, F., Choudhary, M., Scheel, D. & Glawischnig, E. (2014) The biosynthetic pathway of Indole‐3‐carbaldehyde and Indole‐3‐carboxylic acid derivatives in Arabidopsis. Plant Physiology, 165, 841–853. PubMed PMC
Calderón Villalobos, L.I.A., Lee, S., De Oliveira, C.et al. (2012) A combinatorial TIR1/AFB–Aux/IAA co‐receptor system for differential sensing of auxin. Nature Chemical Biology, 8, 477–485. PubMed PMC
Casal, J.J. & Balasubramanian, S. (2019) Thermomorphogenesis. Annual Review of Plant Biology, 70, 321–346. PubMed
Chapman, E.J., Greenham, K., Castillejo, C., Sartor, R., Bialy, A., Sun, T.et al. (2012) Hypocotyl transcriptome reveals auxin regulation of growth‐promoting genes through ga‐dependent and ‐independent pathways. PLoS One, 7, e36210. PubMed PMC
Chen, J.‐G., Pandey, S., Huang, J., Alonso, J.M., Ecker, J.R., Assmann, S.M.et al. (2004) GCR1 can act independently of heterotrimeric G‐Protein in response to Brassinosteroids and Gibberellins in Arabidopsis seed germination. Plant Physiology, 135, 907–915. PubMed PMC
Chen, J.‐G., Willard, F.S., Huang, J., Liang, J., Chasse, S.A., Jones, A.M.et al. (2003) A seven‐transmembrane RGS protein that modulates plant cell proliferation. Science, 301, 1728–1731. PubMed
Cheng, Y., Dai, X. & Zhao, Y. (2004) AtCAND1, A HEAT‐repeat protein that participates in auxin signaling in Arabidopsis. Plant Physiology, 135, 1020–1026. PubMed PMC
Chung, B.Y.W., Balcerowicz, M., Di Antonio, M., Jaeger, K.E., Geng, F., Franaszek, K.et al. (2020) An RNA thermoswitch regulates daytime growth in Arabidopsis. Nature Plants, 6, 522–532. PubMed PMC
Cong, F., Cheung, A.K. & Huang, S.‐M.‐A. (2012) Chemical genetics–based target identification in drug discovery. Annual Review of Pharmacology and Toxicology, 52, 57–78. PubMed
Covington, M.F. & Harmer, S.L. (2007) The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biology, 5, e222. PubMed PMC
Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N. & Mann, M. (2014) Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics: MCP, 13, 2513–2526. PubMed PMC
Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V. & Mann, M. (2011) Andromeda: a peptide search engine integrated into the Maxquant environment. Journal of Proteome Research, 10, 1794–1805. PubMed
Crawford, A.J., McLachlan, D.H., Hetherington, A.M. & Franklin, K.A. (2012) High temperature exposure increases plant cooling capacity. Current Biology, 22, R396–R397. PubMed
Cutler, S. & McCourt, P. (2005) Dude, where’s my phenotype? Dealing with redundancy in signaling networks. Plant Physiology, 138, 558–559. PubMed PMC
Dai, X., Hayashi, K., Nozaki, H., Cheng, Y. & Zhao, Y. (2005) Genetic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. Proceedings of the National Academy of Sciences of United States of America, 102, 3129–3134. PubMed PMC
Dejonghe, W. & Russinova, E. (2017) Plant chemical genetics: from phenotype‐based screens to synthetic biology. Plant Physiology, 174, 5–20. PubMed PMC
del Pozo, J.C., Dharmasiri, S., Hellmann, H., Walker, L., Gray, W.M. & Estelle, M. (2002) AXR1‐ECR1–dependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin response. The Plant Cell, 14, 421–433. PubMed PMC
del Pozo, J.C. & Estelle, M. (1999) The Arabidopsis cullin AtCUL1 is modified by the ubiquitin‐related protein RUB1. Proceedings of the National Academy of Sciences of United States of America, 96, 15342–15347. PubMed PMC
Drakakaki, G., Robert, S., Szatmari, A.‐M., Brown, M.Q., Nagawa, S., Van Damme, D.et al. (2011) Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proceedings of the National Academy of Sciences of United States of America, 108, 17850–17855. PubMed PMC
Estelle, M.A. & Somerville, C. (1987) Auxin‐resistant mutants of Arabidopsis thaliana with an altered morphology. Molecular and General Genetics, 206, 200–206.
Fiorucci, A.‐S., Galvão, V.C., Ince, Y.Ç., Boccaccini, A., Goyal, A., Allenbach Petrolati, L.et al. (2020) PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. New Phytologist, 226, 50–58. PubMed PMC
Franklin, K.A., Lee, S.H., Patel, D., Kumar, S.V., Spartz, A.K., Gu, C.et al. (2011) PHYTOCHROME‐INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of United States of America, 108, 20231–20235. PubMed PMC
Futamura, Y., Muroi, M. & Osada, H. (2013) Target identification of small molecules based on chemical biology approaches. Molecular BioSystems, 9, 897–914. PubMed
Gao, Y., Zeng, Q., Guo, J., Cheng, J., Ellis, B.E. & Chen, J.‐G. (2007) Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. The Plant Journal, 52, 1001–1013. PubMed
Garrido‐Vargas, F., Godoy, T., Tejos, R. & O’Brien, J.A. (2020) Overexpression of the auxin receptor AFB3 in Arabidopsis results in salt stress resistance and the modulation of NAC4 and SZF1. International Journal of Molecular Sciences, 21, 9528. PubMed PMC
Gleason, C., Foley, R.C. & Singh, K.B. (2011) Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide Dicamba. PLoS One, 6, e17245. PubMed PMC
González‐Guzmán, M., Abia, D., Salinas, J., Serrano, R. & Rodríguez, P.L. (2004) Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. Plant Physiology, 135, 325–333. PubMed PMC
Gray, W.M., Östin, A., Sandberg, G., Romano, C.P. & Estelle, M. (1998) High temperature promotes auxin‐mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of United States of America, 95, 7197–7202. PubMed PMC
Grozinger, C.M., Chao, E.D., Blackwell, H.E., Moazed, D. & Schreiber, S.L. (2001) Identification of a class of small molecule inhibitors of the Sirtuin family of NAD‐dependent deacetylases by phenotypic screening. Journal of Biological Chemistry, 276, 38837–38843. PubMed
Guo, J., Zeng, Q., Emami, M., Ellis, B.E. & Chen, J.‐G. (2008) The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS One, 3, e2982. PubMed PMC
Hicks, G.R. & Raikhel, N.V. (2014) Plant chemical biology: are we meeting the promise? Frontiers in Plant Science, 5, 455. PubMed PMC
Ibañez, C., Poeschl, Y., Peterson, T., Bellstädt, J., Denk, K., Gogol‐Döring, A.et al. (2017) Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana . BMC Plant Biology, 17, 114. PubMed PMC
Ibdah, M., Chen, Y.‐T., Wilkerson, C.G. & Pichersky, E. (2009) An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiology, 150, 416–423. PubMed PMC
Jones, A.M., Ecker, J.R. & Chen, J.‐G. (2003) A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiology, 131, 1623–1627. PubMed PMC
Jung, J.‐H., Barbosa, A.D., Hutin, S., Kumita, J.R., Gao, M., Derwort, D.et al. (2020) A prion‐like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 585, 256–260. PubMed
Jung, J.‐H., Domijan, M., Klose, C., Biswas, S., Ezer, D. & Gao, M. et al. (2016) Phytochromes function as thermosensors in Arabidopsis. Science, 354, 886–889. PubMed
Kaschani, F. & van der Hoorn, R. (2007) Small molecule approaches in plants. Proteomics Genomics, 11, 88–98. PubMed
Katz, E., Nisani, S., Yadav, B.S., Woldemariam, M.G., Shai, B., Obolski, U.et al. (2015) The glucosinolate breakdown product indole‐3‐carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana . The Plant Journal, 82, 547–555. PubMed
Klepikova, A.V., Kasianov, A.S., Gerasimov, E.S., Logacheva, M.D. & Penin, A.A. (2016) A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA‐seq profiling. The Plant Journal, 88, 1058–1070. PubMed
Legris, M., Klose, C., Burgie, E.S., Rojas, C.C., Neme, M., Hiltbrunner, A.et al. (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science, 354, 897–900. PubMed
Lehmann, T., Janowitz, T., Sánchez‐Parra, B., Alonso, M.‐M.‐P., Trompetter, I., Piotrowski, M.et al. (2017) Arabidopsis NITRILASE 1 contributes to the regulation of root growth and development through modulation of auxin biosynthesis in seedlings. Frontiers in Plant Science, 8, 36. PubMed PMC
Leivar, P., Monte, E., Al‐Sady, B., Carle, C., Storer, A., Alonso, J.M.et al. (2008) The Arabidopsis phytochrome‐interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. The Plant Cell, 20, 337–352. PubMed PMC
Li, J., Dai, X. & Zhao, Y. (2006) A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiology, 140, 899–908. PubMed PMC
Marlo, J.E., Niswender, C.M., Days, E.L., Bridges, T.M., Xiang, Y., Rodriguez, A.L.et al. (2009) Discovery and characterization of novel allosteric potentiators of m1 muscarinic receptors reveals multiple modes of activity. Molecular Pharmacology, 75, 577–588. PubMed PMC
Martins, S., Montiel‐Jorda, A., Cayrel, A., Huguet, S., Roux, C.‐P.‐L., Ljung, K.et al. (2017) Brassinosteroid signaling‐dependent root responses to prolonged elevated ambient temperature. Nature Communications, 8, 309. PubMed PMC
Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M.et al. (2011) The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences of United States of America, 108, 18512–18527. PubMed PMC
Michalski, A., Damoc, E., Lange, O., Denisov, E., Nolting, D., Müller, M.et al. (2012) Ultra high resolution linear ion trap orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/Ms and versatile peptide fragmentation modes. Molecular & Cellular Proteomics: MCP, 11(3). 10.1074/mcp.O111.013698 PubMed DOI PMC
Nagashima, A., Uehara, Y. & Sakai, T. (2008) The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N‐1‐naphthyphthalamic acid on the phototropic and gravitropic responses of Arabidopsis hypocotyls. Plant and Cell Physiology, 49, 1250–1255. PubMed
Nishimura, T., Hayashi, K., Suzuki, H., Gyohda, A., Takaoka, C., Sakaguchi, Y.et al. (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. The Plant Journal, 77, 352–366. PubMed
Normanly, J., Grisafi, P., Fink, G.R. & Bartel, B. (1997) Arabidopsis mutants resistant to the auxin effects of indole‐3‐acetonitrile are defective in the nitrilase encoded by the NIT1 gene. The Plant Cell, 9, 1781–1790. PubMed PMC
Oh, E., Zhu, J.‐Y., Bai, M.‐Y., Arenhart, R.A., Sun, Y. & Wang, Z.‐Y. (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl S. McCormick, ed. eLife, 3, e03031. PubMed PMC
Okushima, Y., Overvoorde, P.J., Arima, K., Alonso, J.M., Chan, A., Chang, C.et al. (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19 . The Plant Cell, 17, 444–463. PubMed PMC
Olsen, J.V., de Godoy, L.M.F., Li, G., Macek, B., Mortensen, P., Pesch, R.et al. (2005) Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C‐trap. Molecular & Cellular Proteomics: MCP, 4, 2010–2021. PubMed
Paponov, I.A., Paponov, M., Teale, W., Menges, M., Chakrabortee, S., Murray, J.A.H.et al. (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Molecular Plant, 1, 321–337. PubMed
Park, S.‐y., Fung, P., Nishimura, N., Jensen, D.r., Fujii, H., Zhao, Y.et al. (2009) Abscisic acid inhibits Type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, 1068–1071. PubMed PMC
Park, Y.‐J., Lee, H.‐J., Gil, K.‐E., Kim, J.Y., Lee, J.H., Lee, H.et al. (2019) Developmental programming of thermonastic leaf movement. Plant Physiology, 180, 1185–1197. PubMed PMC
Parry, G., Calderon‐Villalobos, L.I., Prigge, M., Peret, B., Dharmasiri, S., Itoh, H.et al. (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proceedings of the National Academy of Sciences of United States of America, 106, 22540–22545. PubMed PMC
Pěnčík, A., Casanova‐Sáez, R., Pilařová, V., Žukauskaitė, A., Pinto, R., Micol, J.L.et al. (2018) Ultra‐rapid auxin metabolite profiling for high‐throughput mutant screening in Arabidopsis. Journal of Experimental Botany, 69, 2569–2579. PubMed PMC
Piotrowski, M. (2008) Primary or secondary? Versatile nitrilases in plant metabolism. Phytochemistry, 69, 2655–2667. PubMed
Piotrowski, M., Schönfelder, S. & Weiler, E.W. (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β‐cyano‐l‐alanine hydratase/nitrilase. Journal of Biological Chemistry, 276, 2616–2621. PubMed
Prigge, M.J., Greenham, K., Zhang, Y., Santner, A., Castillejo, C., Mutka, A.M.et al. (2016) The Arabidopsis auxin receptor F‐Box proteins AFB4 and AFB5 are required for response to the synthetic auxin picloram. G3: Genes, Genomes, Genetics, 6, 1383–1390. PubMed PMC
Quint, M., Delker, C., Franklin, K.A., Wigge, P.A., Halliday, K.J. & van Zanten, M. (2016) Molecular and genetic control of plant thermomorphogenesis. Nature Plants, 2, 15190. PubMed
Rakusová, H., Gallego‐Bartolomé, J., Vanstraelen, M., Robert, H.S., Alabadí, D., Blázquez, M.A.et al. (2011) Polarization of PIN3‐dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana . The Plant Journal, 67, 817–826. PubMed
Rappsilber, J., Ishihama, Y. & Mann, M. (2003) Stop and go extraction tips for matrix‐assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Analytical Chemistry, 75, 663–670. PubMed
Rittenberg, D. & Foster, G.L. (1940) A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. Journal of Biological Chemistry, 133, 737–744.
Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J. & Estelle, M. (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes & Development, 12, 198–207. PubMed PMC
Savaldi‐Goldstein, S., Baiga, T.J., Pojer, F.et al. (2008) New auxin analogs with growth‐promoting effects in intact plants reveal a chemical strategy to improve hormone delivery. Proceedings of the National Academy of Sciences of United States of America, 105, 15190–21519. PubMed PMC
Seo, M., Akaba, S., Oritani, T., Delarue, M., Bellini, C., Caboche, M.et al. (1998) Higher activity of an aldehyde oxidase in the auxin‐overproducing superroot1 mutant of Arabidopsis thaliana . Plant Physiology, 116, 687–693. PubMed PMC
Seo, M., Aoki, H., Koiwai, H., Kamiya, Y., Nambara, E. & Koshiba, T. (2004) Comparative studies on the Arabidopsis Aldehyde Oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant and Cell Physiology, 45, 1694–1703. PubMed
Shimizu‐Mitao, Y. & Kakimoto, T. (2014) Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB. Plant and Cell Physiology, 55, 1450–1459. PubMed
Sorin, C., Bussell, J.D., Camus, I., Ljung, K., Kowalczyk, M., Geiss, G.et al. (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. The Plant Cell, 17, 1343–1359. PubMed PMC
Sugawara, S., Hishiyama, S., Jikumaru, Y., Hanada, A., Nishimura, T., Koshiba, T.et al. (2009) Biochemical analyses of indole‐3‐acetaldoxime‐dependent auxin biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences of United States of America, 106, 5430–5435. PubMed PMC
Sun, J., Qi, L., Li, Y., Chu, J. & Li, C. (2012) PIF4–mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genetics, 8, e1002594. PubMed PMC
Teschner, J., Lachmann, N., Schulze, J., Geisler, M., Selbach, K., Santamaria‐Araujo, J.et al. (2010) A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in Molybdenum cofactor biosynthesis. The Plant Cell, 22, 468–480. PubMed PMC
Tian, Q., Uhlir, N.J. & Reed, J.W. (2002) Arabidopsis SHY2/IAA3 inhibits auxin‐regulated gene expression. The Plant Cell, 14, 301–319. PubMed PMC
Tóth, R. & van der Hoorn, R.A.L. (2010) Emerging principles in plant chemical genetics. Trends in Plant Science, 15, 81–88. PubMed
Trapnell, C., Pachter, L. & Salzberg, S.L. (2009) TopHat: discovering splice junctions with RNA‐Seq. Bioinformatics, 25, 1105–1111. PubMed PMC
Trompetter . (2010) Untersuchungen zu den NIT1‐homologen. Bochum: Ruhr‐Universität.
Trusov, Y., Rookes, J.E., Tilbrook, K., Chakravorty, D., Mason, M.G., Anderson, D.et al. (2007) Heterotrimeric G Protein γ subunits provide functional selectivity in Gβγ dimer signaling in Arabidopsis. The Plant Cell, 19, 1235–1250. PubMed PMC
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T.et al. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13, 731–740. PubMed
Ullah, H., Chen, J.‐G., Temple, B., Boyes, D.C., Alonso, J.M., Davis, K.R.et al. (2003) The β‐subunit of the Arabidopsis G protein negatively regulates auxin‐induced cell division and affects multiple developmental processes. The Plant Cell, 15, 393–409. PubMed PMC
van der Woude, L.C., Perrella, G., Snoek, B.L.et al. (2019) HISTONE DEACETYLASE 9 stimulates auxin‐dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. Proceedings of the National Academy of Sciences of United States of America, 116, 25343–25354. PubMed PMC
Van Slyke, D.D. & Hiller, A. (1933) Determination of ammonia in blood. Journal of Biological Chemistry, 102, 499–504.
Vidal, E.A., Araus, V., Lu, C., Parry, G., Green, P.J., Coruzzi, G.M.et al. (2010) Nitrate‐responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana . Proceedings of the National Academy of Sciences of United States of America, 107, 4477. PubMed PMC
Vik, D., Mitarai, N., Wulff, N., Halkier, B.A. & Burow, M. (2018) Dynamic modeling of indole glucosinolate hydrolysis and its impact on auxin signaling. Frontiers in Plant Science, 9, 550. PubMed PMC
Vizcaíno, J.A., Csordas, A., Del‐Toro, N., Dianes, J.A., Griss, J., Lavidas, I.et al. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Research, 44, D447–D456. PubMed PMC
Vorwerk, S., Biernacki, S., Hillebrand, H., Janzik, I., Müller, A., Weiler, E.W.et al. (2001) Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3‐gene cluster. Planta, 212, 508–516. PubMed
Vu, L.D., Gevaert, K. & De Smet, I. (2019) Feeling the heat: Searching for plant thermosensors. Trends in Plant Science, 24, 210–219. PubMed
Zhao, Y. (2012) Auxin biosynthesis: a simple two‐step pathway converts tryptophan to indole‐3‐acetic acid in plants. Molecular Plant, 5, 334–338. PubMed PMC
Zhao, Y., Dai, X., Blackwell, H.E., Schreiber, S.L. & Chory, J. (2003) SIR1, an upstream component in auxin signaling identified by chemical genetics. Science, 301, 1107–1110. PubMed