Early epileptiform EEG activity in infants with tuberous sclerosis complex predicts epilepsy and neurodevelopmental outcomes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu klinické zkoušky, časopisecké články, práce podpořená grantem
PubMed
33778971
DOI
10.1111/epi.16892
Knihovny.cz E-zdroje
- Klíčová slova
- EEG, epilepsy, epileptogenesis, neurodevelopment, tuberous sclerosis complex,
- MeSH
- antikonvulziva terapeutické užití MeSH
- časná diagnóza * MeSH
- elektroencefalografie MeSH
- epilepsie diagnóza farmakoterapie etiologie MeSH
- hamartin genetika MeSH
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- tuberin genetika MeSH
- tuberózní skleróza komplikace diagnóza genetika MeSH
- vigabatrin terapeutické užití MeSH
- vývojové poruchy u dětí epidemiologie etiologie MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antikonvulziva MeSH
- hamartin MeSH
- TSC1 protein, human MeSH Prohlížeč
- TSC2 protein, human MeSH Prohlížeč
- tuberin MeSH
- vigabatrin MeSH
OBJECTIVE: To study the association between timing and characteristics of the first electroencephalography (EEG) with epileptiform discharges (ED-EEG) and epilepsy and neurodevelopment at 24 months in infants with tuberous sclerosis complex (TSC). METHODS: Patients enrolled in the prospective Epileptogenesis in a genetic model of epilepsy - Tuberous sclerosis complex (EPISTOP) trial, had serial EEG monitoring until the age of 24 months. The timing and characteristics of the first ED-EEG were studied in relation to clinical outcome. Epilepsy-related outcomes were analyzed separately in a conventionally followed group (initiation of vigabatrin after seizure onset) and a preventive group (initiation of vigabatrin before seizures, but after appearance of interictal epileptiform discharges [IEDs]). RESULTS: Eighty-three infants with TSC were enrolled at a median age of 28 days (interquartile range [IQR] 14-54). Seventy-nine of 83 patients (95%) developed epileptiform discharges at a median age of 77 days (IQR 23-111). Patients with a pathogenic TSC2 variant were significantly younger (P-value .009) at first ED-EEG and more frequently had multifocal IED (P-value .042) than patients with a pathogenic TSC1 variant. A younger age at first ED-EEG was significantly associated with lower cognitive (P-value .010), language (P-value .001), and motor (P-value .013) developmental quotients at 24 months. In the conventional group, 48 of 60 developed seizures. In this group, the presence of focal slowing on the first ED-EEG was predictive of earlier seizure onset (P-value .030). Earlier recording of epileptiform discharges (P-value .019), especially when multifocal (P-value .026) was associated with higher risk of drug-resistant epilepsy. In the preventive group, timing, distribution of IED, or focal slowing, was not associated with the epilepsy outcomes. However, when multifocal IEDs were present on the first ED-EEG, preventive treatment delayed the onset of seizures significantly (P-value <.001). SIGNIFICANCE: Early EEG findings help to identify TSC infants at risk of severe epilepsy and neurodevelopmental delay and those who may benefit from preventive treatment with vigabatrin.
Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
Child Neurology and Psychiatry Unit Systems Medicine Department Tor Vergata University Rome Italy
Department of Child Neurology Brain Centre University Medical Centre Utrecht Utrecht The Netherlands
Department of Child Neurology Charité University Medicine Berlin Berlin Germany
Department of Child Neurology Medical University of Warsaw Warsaw Poland
Department of Neurology and Epileptology The Children's Memorial Health Institute Warsaw Poland
Department of Pediatrics Medical University Vienna Vienna Austria
Department of University of Amsterdam Amsterdam The Netherlands
Diagnose und Behandlungszentrum für Kinder und Jugendliche Vivantes Klinikum Neuköln Berlin Germany
Institute of Heat Engineering Warsaw University and Technology Warsaw Poland
Neuroscience Unit Queensland Children's Hospital Brisbane Australia
Pediatric Neurology Unit University Hospital Brussel Brussels Belgium
Stichting Epilepsie Instellingen Nederland Zwolle The Netherlands
Transition Technologies Warsaw Poland
University of Queensland School of Clinical Medicine Brisbane Australia
Zobrazit více v PubMed
Henske EP, Jozwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035.
Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015;14:733-45.
Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia. 2010;51:1236-41.
Capal JK, Bernardino-Cuesta B, Horn PS, Murray D, Byars AW, Bing NM, et al. Influence of seizures on early development in tuberous sclerosis complex. Epilepsy Behav. 2017;70:245-52.
Jeong A, Nakagawa JA, Wong M. Predictors of drug-resistant epilepsy in tuberous sclerosis complex. J Child Neurol. 2017;32:1092-8.
de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22:345-61.
Jeste SS, Varcin KJ, Hellemann GS, Gulsrud AC, Bhatt R, Kasari C, et al. Symptom profiles of autism spectrum disorder in tuberous sclerosis complex. Neurology. 2016;87:766-72.
Pavlidis E, Lloyd RO, Boylan GB. Eeg - a valuable biomarker of brain injury in preterm infants. Dev Neurosci. 2017;39:23-35.
Wu JY, Peters JM, Goyal M, Krueger D, Sahin M, Northrup H, et al. Clinical electroencephalographic biomarker for impending epilepsy in asymptomatic tuberous sclerosis complex infants. Pediatr Neurol. 2016;54:29-34.
Domanska-Pakiela D, Kaczorowska M, Jurkiewicz E, Kotulska K, Dunin-Wasowicz D, Jozwiak S. Eeg abnormalities preceding the epilepsy onset in tuberous sclerosis complex patients - a prospective study of 5 patients. Eur J Paediatr Neurol. 2014;18:458-68.
Wu JY, Goyal M, Peters JM, Krueger D, Sahin M, Northrup H, et al. Scalp EEG spikes predict impending epilepsy in tsc infants: A longitudinal observational study. Epilepsia. 2019;60:2428-36.
Jóźwiak S, Kotulska K, Domańska-Pakieła D, Łojszczyk B, Syczewska M, Chmielewski D, et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediatr Neurol. 2011;15:424-31.
Jozwiak S, Słowińska M, Borkowska J, Sadowski K, Łojszczyk B, Domańska-Pakieła D, et al. Preventive antiepileptic treatment in tuberous sclerosis complex: a long-term, prospective trial. Pediatr Neurol. 2019;101:18-25.
Kotulska K, Kwiatkowski DJ, Curatolo P, Weschke B, Riney K, Jansen F, et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the epistop trial. Ann Neurol. 2021;89:304-14.
Curatolo P, Aronica E, Jansen A, Jansen F, Kotulska K, Lagae L, et al. Early onset epileptic encephalopathy or genetically determined encephalopathy with early onset epilepsy? Lessons learned from tsc. Eur J Paediatr Neurol. 2016;20:203-11.
Moavero R, Kotulska K, Lagae L, Benvenuto A, Emberti Gialloreti L, Weschke B, et al. Is autism driven by epilepsy in infants with tuberous sclerosis complex? Ann Clin Transl Neurol. 2020;7:1371-81.
Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus G. Tuberous sclerosis complex diagnostic criteria update: Recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2012;2013(49):243-54.
Lloyd RO, O'Toole JM, Pavlidis E, Filan PM, Boylan GB. Electrographic seizures during the early postnatal period in preterm infants. J Pediatr. 2017;187(18-25):e12.
Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51:1069-77.
Moavero R, Benvenuto A, Emberti Gialloreti L, Siracusano M, Kotulska K, Weschke B, et al. Early clinical predictors of autism spectrum disorder in infants with tuberous sclerosis complex: results from the epistop study. J Clin Med. 2019;8(6):788.
Barton B. In: Peat JK, editor. Medical statistics: A guide to SPSS, data analysis and critical appraisal/Belinda barton, Jennifer peat. Chichester, West Sussex; Hoboken, NJ: Wiley Blackwell/BMJ Books; 2014.
Winterkorn EB, Pulsifer MB, Thiele EA. Cognitive prognosis of patients with tuberous sclerosis complex. Neurology. 2007;68:62-4.
Mecarelli O. Clinical electroencephalography. Cham: Springer International Publishing; 2019.
Ogórek B, Hamieh L, Hulshof HM, Lasseter K, Klonowska K, Kuijf H, et al. TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC infants: results of the EPISTOP study. Genet Med. 2020;22(9):1489-97.
Curatolo P, Nabbout R, Lagae L, Aronica E, Ferreira JC, Feucht M, et al. Management of epilepsy associated with tuberous sclerosis complex: updated clinical recommendations. Eur J Paediatr Neurol. 2018;22:738-48.
Althouse AD. Adjust for multiple comparisons? It's not that simple. Ann Thorac Surg. 2016;101:1644-5.