Viruses, cancer and non-self recognition

. 2021 Mar ; 11 (3) : 200348. [epub] 20210331

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33784856

Virus-host interactions form an essential part of every aspect of life, and this review is aimed at looking at the balance between the host and persistent viruses with a focus on the immune system. The virus-host interaction is like a cat-and-mouse game and viruses have developed ingenious mechanisms to manipulate cellular pathways, most notably the major histocompatibility (MHC) class I pathway, to reside within infected cell while evading detection and destruction by the immune system. However, some of the signals sensing and responding to viral infection are derived from viruses and the fact that certain viruses can prevent the infection of others, highlights a more complex coexistence between the host and the viral microbiota. Viral immune evasion strategies also illustrate that processes whereby cells detect and present non-self genetic material to the immune system are interlinked with other cellular pathways. Immune evasion is a target also for cancer cells and a more detailed look at the interfaces between viral factors and components of the MHC class I peptide-loading complex indicates that these interfaces are also targets for cancer mutations. In terms of the immune checkpoint, however, viral and cancer strategies appear different.

Zobrazit více v PubMed

Villarreal LP. 2005. Viruses and the evolution of life. Washington, DC: ASM Press.

Villarreal LP. 2006. How viruses shape the tree of life. Future Virol. 1, 587-595. (10.2217/17460794.1.5.587) DOI

Villarreal LP, Witzany G. 2010. Viruses are essential agents within the roots and stem of the tree of life. J Theor. Biol. 262, 698-710. (10.1016/j.jtbi.2009.10.014) PubMed DOI

Villarreal LP. 2011. Viral ancestors of antiviral systems. Viruses 3, 1933-1958. (10.3390/v3101933) PubMed DOI PMC

Yewdell JW, Reits E, Neefjes J. 2003. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat. Rev. Immunol. 3, 952-961. (10.1038/nri1250) PubMed DOI

Princiotta M, Finzi D, Qian S, Gibbs J, Schuchmann S, Buttgereit F, Bennink JR, Yewdell JW. 2003. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18, 343-354. (10.1016/S1074-7613(03)00051-7) PubMed DOI

Wei J, et al. 2017. Varied role of ubiquitylation in generating MHC class I peptide ligands. J. Immunol. 198, 3835-3845. (10.4049/jimmunol.1602122) PubMed DOI PMC

Marrack P, Scott-Browne J, Dai S, Gapin L, Kappler J. 2008. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu. Rev. Immunol. 26, 171-203. (10.1146/annurev.immunol.26.021607.090421) PubMed DOI PMC

Yin L, Scott-Browne J, Kappler J, Gapin L, Marrack P. 2012. T cells and their eons-old obsession with MHC. Immunol. Rev. 250, 49-60. (10.1111/imr.12004) PubMed DOI PMC

Villarreal LP, Defilippis VR, Gottlieb KA. 2000. Acute and persistent viral life strategies and their relationship to emerging diseases. Virology 272, 1-6. (10.1006/viro.2000.0381) PubMed DOI

Forte E, Zhang Z, Thorp EB, Hummel M. 2020. Cytomegalovirus latency and reactivation: an intricate interplay with the host immune response. Front. Cell. Inf. Microbiol. 10, 130. (10.3389/fcimb.2020.00130) PubMed DOI PMC

Cesarman E. 2014. Gammaherpesviruses and lymphoproliferative disorders. Annu. Rev. Pathol. Mech. Dis. 9, 349-372. (10.1146/annurev-pathol-012513-104656) PubMed DOI

Das C, Hansen KC, Tyler JKLMS. 2017. The virome in host health and disease Ken. Physiol. Behav. 176, 139-148. (10.1016/j.physbeh.2017.03.040) PubMed DOI PMC

Gnanasundram SV, Pyndiah S, Daskalogianni C, Armfield K, Nylander K, Wilson JB, Fåhraeus R. 2017. PI3 Kδ activates E2F1 synthesis in response to mRNA translation stress. Nat. Commun. 8, 2103. (10.1038/s41467-017-02282-w) PubMed DOI PMC

Gnanasundram SV, Fåhraeus R. 2018. Translation stress regulates ribosome synthesis and cell proliferation. Int. J. Mol. Sci. 19, 3757. (10.3390/ijms19123757) PubMed DOI PMC

Prado Martins R, Fahraeus R. 2017. A matter of maturity: the impact of pre-MRNA processing in gene expression and antigen presentation. Int. J. Biochem. Cell Biol. 91, 203-211. (10.1016/j.biocel.2017.05.023) PubMed DOI

Seliger B, Ritz U, Ferrone S. 2006. Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation. Int. J. Cancer 118, 129-138. (10.1002/ijc.21312) PubMed DOI

Volff JN. 2006. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28, 913-922. (10.1002/bies.20452) PubMed DOI

Mattick JS. 2009. Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann. NY Acad. Sci. 1178, 29-46. (10.1111/j.1749-6632.2009.04991.x) PubMed DOI

Villarreal LP, Witzany G. 2013. The DNA habitat and its RNA inhabitants: at the dawn of RNA sociology. Genomics Insights 6, 1-12. (10.4137/GEI.S11490) PubMed DOI PMC

Moelling K. 2013. What contemporary viruses tell us about evolution: a personal view. Arch. Virol. 158, 1833-1848. (10.1007/s00705-013-1679-6) PubMed DOI PMC

Blond J-L, Besème F, Duret L, Bouton O, Bedin F, Perron H, Mandrand B, Mallet F. 1999. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J. Virol. 73, 1175-1185. (10.1128/JVI.73.2.1175-1185.1999) PubMed DOI PMC

Haig D. 2012. Retroviruses and the placenta. Curr. Biol. 22, R609-R613. (10.1016/j.cub.2012.06.002) PubMed DOI

Villarreal LP. 2016. Viruses and the placenta: the essential virus first view. APMIS. Blackwell Munksgaard 124, 20-30. (10.1111/apm.12485) PubMed DOI

Borza CM, Hutt-Fletcher LM. 2002. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat. Med. 8, 594-599. (10.1038/nm0602-594) PubMed DOI

Fries KL, Sculley TB, Webster-Cyriaque J, Rajadurai P, Sadler RH, Raab-Traub N. 1997. Identification of a novel protein encoded by the BamHI A region of the Epstein-Barr virus. J. Virol. 71, 2765-2771. (10.1128/JVI.71.4.2765-2771.1997) PubMed DOI PMC

Neves M, Marinho-Dias J, Ribeiro J, Sousa H. 2017. Epstein–Barr virus strains and variations: geographic or disease-specific variants? J. Med. Virol. 89, 373-387. (10.1002/jmv.24633) PubMed DOI

Geisler J, Touma J, Rahbar A, Söderberg-Nauclér C, Vetvik K. 2019. A review of the potential role of human cytomegalovirus (HCMV) infections in breast cancer carcinogenesis and abnormal immunity. Cancers 11, 1842. (10.3390/cancers11121842) PubMed DOI PMC

Zuhair M, Smit GSA, Wallis G, Jabbar F, Smith C, Devleesschauwer B, Griffiths P. 2019. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev. Med. Virol. 29, e2034. (10.1002/rmv.2034) PubMed DOI

Mesri EA, Cesarman E, Boshoff C. 2010. Kaposi's sarcoma and its associated herpesvirus. Nature Reviews Cancer. Nat. Rev. Cancer 10, 707-719. (10.1038/nrc2888) PubMed DOI PMC

Hayward GS. 1999. KSHV strains: the origins and global spread of the virus. Semin Cancer Biol. 9, 187-199. (10.1006/scbi.1998.0116) PubMed DOI

Pope JH. 1967. Establishment of cell lines from peripheral leucocytes in infectious mononucleosis. Nature 216, 810-811. (10.1038/216810a0) PubMed DOI

Henle W. 1968. Evidence for viruses in acute leukemia and Burkitt's tumor. Cancer 21, 580-586. (10.1002/1097-0142(196804)21:4<580::AID-CNCR2820210406>3.0.CO;2-Q) PubMed DOI

Mrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, Hammerschmidt W. 2019. Epstein–Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc. Natl Acad. Sci. USA 116, 16 046-16 055. (10.1073/pnas.1901314116) PubMed DOI PMC

Shannon-Lowe C, Rickinson AB, Bell AI. 2017. Epstein-barr virus-associated lymphomas. Phil.Trans. R. Soc. B Biol. Sci. 372, 20160271. (10.1098/rstb.2016.0271) PubMed DOI PMC

Shannon-Lowe C, Rickinson A. 2019. The global landscape of EBV-associated tumors. Front. Oncol. 9, 713. (10.3389/fonc.2019.00713) PubMed DOI PMC

Homberger FR. 1997. Enterotropic mouse hepatitis virus. Lab. Anim. 31, 97-115. (10.1258/002367797780600189) PubMed DOI

Villarreal LP. 2009. Persistence pays: how viruses promote host group survival. Curr. Opin. Microbiol. 12, 467-472. (10.1016/j.mib.2009.06.014) PubMed DOI PMC

Villarreal LP, Witzany G. 2019. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann. NY Acad. Sci. 1447, 5-20. (10.1111/nyas.14040) PubMed DOI

Chrétien I, Marcuz A, Courtet M, Katevuo K, Vainio O, Heath JK, White SJ, Du Pasquier L. 1998. CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. Eur. J. Immunol. 28, 4094-4104. (10.1002/(SICI)1521-4141(199812)28:12<4094::AID-IMMU4094>3.0.CO;2-2) PubMed DOI

Du Pasquier L, Zucchetti I, De Santis R. 2004. Immunoglobulin superfamily receptors in protochordates: before RAG time. Immunol. Rev. 198, 233-248. (10.1111/j.0105-2896.2004.00122.x) PubMed DOI

Lehnherr H, Maguin E, Jafri S, Yarmolinsky MB. 1993. Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 233, 414-428. (10.1006/jmbi.1993.1521) PubMed DOI

Villarreal LP. 2009. Origin of group identity: viruses, addiction, and cooperation. Berlin, Germany: Springer.

Villarreal LP. 2016. Persistent virus and addiction modules: an engine of symbiosis. Curr. Opin. Microbiol. 31, 70-79. (10.1016/j.mib.2016.03.005) PubMed DOI

Roach DR, Leung CY, Henry M, Morello E, Singh D, Di Santo JP, Weitz JS, Debarbieux L. 2017. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38-47.e4. (10.1016/j.chom.2017.06.018) PubMed DOI

Ott SJ, et al. 2017. Efficacy of sterile fecal filtrate transfer for treating patients with clostridium difficile infection. Gastroenterology 152, 799-811.e7. (10.1053/j.gastro.2016.11.010) PubMed DOI

Maurice CF. 2019. Considering the other half of the gut microbiome: bacteriophages. mSystems 4, e00102-19. (10.1128/mSystems.00102-19) PubMed DOI PMC

Khadijah S, Neo SY, Hossain MS, Miller LD, Mathavan S, Kwang J. 2003. Identification of white spot syndrome virus latency-related genes in specific-pathogen-free shrimps by use of a microarray. J. Virol. 77, 10 162-10 167. (10.1128/JVI.77.18.10162-10167.2003) PubMed DOI PMC

Wang Z, Hu L, Yi G, Xu H, Qi Y, Yao L. 2004. ORF390 of white spot syndrome virus genome is identified as a novel anti-apoptosis gene. Biochem. Biophys. Res. Commun. 325, 899-907. (10.1016/j.bbrc.2004.09.224) PubMed DOI

Flajnik MF. 1994. Primitive vertebrate immunity: what is the evolutionary derivative of molecules that define the adaptive immune system? Ciba Foundation symp. 186, 224-232. discussion 233-6. PubMed

Flajnik MF, Kasahara M. 2001. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15, 351-362. (10.1016/S1074-7613(01)00198-4) PubMed DOI

Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF. 2006. Ancestral organization of the MHC revealed in the amphibian Xenopus. J. Immunol. 176, 3674-3685. (10.4049/jimmunol.176.6.3674) PubMed DOI

Flajnik MF. 2014. Re-evaluation of the immunological big bang. Curr. Biol. 24, R1060-R1065. (10.1016/j.cub.2014.09.070) PubMed DOI PMC

Villarreal LP. 2009. The source of self: genetic parasites and the origin of adaptive immunity. Ann. NY Acad. Sci. 1178, 194-232. (10.1111/j.1749-6632.2009.05020.x) PubMed DOI

Chuong EB, Elde NC, Feschotte C. 2016. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083-1087. (10.1126/science.aad5497) PubMed DOI PMC

Du Pasquier L. 2004. Speculations on the origin of the vertebrate immune system. Immunol. Lett. 92, 3-9. (10.1016/j.imlet.2003.10.012) PubMed DOI

Dreyfus DH, Jones JF, Gelfand EW. 1999. Asymmetric DDE (D35E)-like sequences in the RAG proteins: implications for V(D)J recombination and retroviral pathogenesis. Med. Hypotheses 52, 545-549. (10.1054/mehy.1997.0691) PubMed DOI

Clark PM, Chitnis N, Shieh M, Kamoun M, Johnson FB, Monos D. 2018. Novel and haplotype specific microRNAs encoded by the major histocompatibility complex. Sci. Rep. 8, 3832. (10.1038/s41598-018-19427-6) PubMed DOI PMC

Chitnis N, Clark PM, Kamoun M, Stolle C, Johnson FB, Monos DS. 2017. An expanded role for HLA genes: HLA-B encodes a microRNA that regulates IgA and other immune response transcripts. Front. Immunol. 8, 583. (10.3389/fimmu.2017.00583) PubMed DOI PMC

Kulski JK. 2019. Long noncoding RNA HCP5, a hybrid HLA class I endogenous retroviral gene: structure, expression, and disease associations. Cells 8, 480. (10.3390/cells8050480) PubMed DOI PMC

Gaudieri S, Giles KM, Kulski JK, Dawkins RL. 1997. Duplication and polymorphism in the MHC: Alu generated diversity and polymorphism within the PERB11 gene family. Hereditas 127, 37-46. (10.1111/j.1601-5223.1997.00037.x) PubMed DOI

Kulski JK, Gaudieri S, Bellgard M, Balmer L, Giles K, Inoko H, Dawkins RL. 1997. The evolution of MHC diversity by segmental duplication and transposition of retroelements. J. Mol. Evol. 45, 599-609. (10.1007/PL00006264) PubMed DOI

Kulski JK, Gaudieri S, Inoko H, Dawkins RL. 1999. Comparison between two human endogenous retrovirus (HERV)-rich regions within the major histocompatibility complex. J. Mol. Evol. 48, 675-683. (10.1007/PL00006511) PubMed DOI

Kulski JK, Gaudieri S, Martin A, Dawkins RL. 1999. Coevolution of PERB11 (MIC) and HLA class I genes with HERV-16 and retroelements by extended genomic duplication. J. Mol. Evol. 49, 84-97. (10.1007/PL00006537) PubMed DOI

Olgun G, Sahin O, Tastan O. 2018. Discovering lncRNA mediated sponge interactions in breast cancer molecular subtypes. BMC Genomics 19, 1-2. (10.1186/s12864-018-5006-1) PubMed DOI PMC

Teng H, Wang P, Xue Y, Liu X, Ma J, Cai H, Xi Z, Li Z, Liu Y. 2016. Role of HCP5-miR-139-RUNX1 feedback loop in regulating malignant behavior of Glioma cells. Mol. Ther. 24, 1806-1822. (10.1038/mt.2016.103) PubMed DOI PMC

Blees A, Januliene D, Hofmann T, Koller N, Schmidt C, Trowitzsch S, Moeller A, Tampé R. 2017. Structure of the human MHC-I peptide-loading complex. Nature 551, 525-528. (10.1038/nature24627) PubMed DOI

Eggensperger S, Tampé R. 2015. The transporter associated with antigen processing: a key player in adaptive immunity. Biol. Chem. 396, 1059-1072. (10.1515/hsz-2014-0320) PubMed DOI

Oldham ML, Grigorieff N, Chen J. 2016. Structure of the transporter associated with antigen processing trapped by herpes simplex virus. Elife 5, e21829. (10.7554/eLife.21829) PubMed DOI PMC

De La Salle H, et al. 1994. Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science 265, 237-241. (10.1126/science.7517574) PubMed DOI

Teisserenc H, Schmitt W, Blake N, Dunbar R, Gadola S, Gross WL, Exley A, Cerundolo V. 1997. A case of primary immunodeficiency due to a defect of the major histocompatibility gene complex class I processing and presentation pathway. Immunol. Lett. 57, 183-187. (10.1016/S0165-2478(97)00072-2) PubMed DOI

Gadola SD, Moins-Teisserenc HT, Trowsdale J, Gross WL, Cerundolo V. 2000. TAP deficiency syndrome. Clin. Exp. Immunol. 121, 173-178. (10.1046/j.1365-2249.2000.01264.x) PubMed DOI PMC

De La Salle H, et al. 1997. Human peptide transporter deficiency: importance of HLA-B in the presentation of TAP-independent EBV antigens. J. Immunol. 158, 4555-4563. PubMed

Lautscham G, Mayrhofer S, Taylor G, Haigh T, Leese A, Rickinson A, Blake N. 2001. Processing of a multiple membrane spanning Epstein-Barr virus protein for CD8+ T cell recognition reveals a proteasome-dependent, transporter associated with antigen processing-independent pathway. J. Exp. Med. 194, 1053-1068. (10.1084/jem.194.8.1053) PubMed DOI PMC

Lautscham G, Rickinson A, Blake N. 2003. TAP-independent antigen presentation on MHC class I molecules: lessons from Epstein-Barr virus. Microbes Infection 5, 291-299. (10.1016/S1286-4579(03)00031-5) PubMed DOI

Del Val M, Antón LC, Ramos M, Muñoz-Abad V, Campos-Sánchez E. 2020. Endogenous TAP-independent MHC-I antigen presentation: not just the ER lumen. Curr. Opin. Immunol. 64, 9-14. (10.1016/j.coi.2019.12.003) PubMed DOI

Nöll A, et al. 2017. Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proc. Natl Acad. Sci. USA 114, E438-E447. (10.1073/pnas.1620009114) PubMed DOI PMC

Neefjes J, Marlieke LMJ, Petra P, Oddmund B. 2011. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823-836. (10.1038/nri3084) PubMed DOI

Garstka MA, et al. 2015. The first step of peptide selection in antigen presentation by MHC class I molecules. Proc. Natl Acad. Sci. USA 112, 1505-1510. (10.1073/pnas.1416543112) PubMed DOI PMC

Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P. 2013. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 5, 1-15. (10.1101/cshperspect.a013169) PubMed DOI PMC

Hoseki J, Ushioda R, Nagata K. 2010. Mechanism and components of endoplasmic reticulum-associated degradation. J. Biochem. 147, 19-25. (10.1093/jb/mvp194) PubMed DOI

Lopata A, Kniss A, Löhr F, Rogov VV, Dötsch V. 2020. Ubiquitination in the erad process. Int. J. Mol. Sci. 21, 1-21. (10.3390/ijms21155369) PubMed DOI PMC

Nakatsukasa K, Brodsky JL. 2008. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9, 861-870. (10.1111/j.1600-0854.2008.00729.x) PubMed DOI PMC

Van den Boomen DJH, Lehner PJ. 2015. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I. Mol. Immunol. 68, 106-111. (10.1016/j.molimm.2015.07.005) PubMed DOI PMC

van de Weijer ML, Schuren ABC, Boomen DJH, Mulder A, Claas FHJ, Lehner PJ, Lebbink RJ, Wiertz EJHJ. 2017. Multiple E2 ubiquitin-conjugating enzymes regulate human cytomegalovirus US2-mediated immunoreceptor downregulation. J. Cell Sci. 130, 2883-2892. (10.1242/jcs.206839) PubMed DOI PMC

Cerami E, et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404. (10.1158/2159-8290.CD-12-0095) PubMed DOI PMC

Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL, Wiley DC. 2001. Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc. Natl Acad. Sci. USA 98, 6794-6799. (10.1073/pnas.121172898) PubMed DOI PMC

Li L, Santarsiero BD, Bouvier M. 2016. Structure of the adenovirus type 4 (Species E) E3-19 K/HLA-A2 complex reveals species-specific features in MHC class I recognition. J. Immunol. 197, 1399-1407. (10.4049/jimmunol.1600541) PubMed DOI PMC

Sester M, Ruszics Z, Mackley E, Burgert H-G. 2013. The transmembrane domain of the adenovirus E3/19 K protein acts as an endoplasmic reticulum retention signal and contributes to intracellular sequestration of major histocompatibility complex class I molecules. J. Virol. 87, 6104-6117. (10.1128/JVI.03391-12) PubMed DOI PMC

Berry R, Watson GM, Jonjic S, Degli-Esposti MA, Rossjohn J. 2020. Modulation of innate and adaptive immunity by cytomegaloviruses. Nat. Rev. Immunol. 20, 113-127. (10.1038/s41577-019-0225-5) PubMed DOI

Waterhouse A, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296-W303. (10.1093/nar/gky427) PubMed DOI PMC

Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z. 2014. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30, 1771-1773. (10.1093/bioinformatics/btu097) PubMed DOI PMC

Parcej D, Tampé R. 2010. ABC proteins in antigen translocation and viral inhibition. Nat. Chem. Biol. 6, 572-580. (10.1038/nchembio.410) PubMed DOI

Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJHJ, Ploegh HL, Peterson PA, Yang Y, Früh K. 1997. The ER-luminal domain of the HCMV glypcoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613-621. (10.1016/S1074-7613(00)80349-0) PubMed DOI

Yang Z, Bjorkman PJ. 2008. Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc. Natl Acad. Sci. USA 105, 10 095-10 100. (10.1073/pnas.0804551105) PubMed DOI PMC

Lehner PJ, Karttunen JT, Wilkinson GWG, Cresswell P. 1997. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc. Natl Acad. Sci. USA 94, 6904-6909. (10.1073/pnas.94.13.6904) PubMed DOI PMC

Verweij MC, Horst D, Griffin BD, Luteijn RD, Davison AJ, Ressing ME, Wiertz EJ. 2015. Viral inhibition of the transporter associated with antigen processing (TAP): a striking example of functional convergent evolution. PLoS Pathogens 11, e1004743. (10.1371/journal.ppat.1004743) PubMed DOI PMC

Hewitt EW. 2003. The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110, 163-169. (10.1046/j.1365-2567.2003.01738.x) PubMed DOI PMC

Park B, Kim Y, Shin J, Lee S, Cho K, Früh K, Lee S, Ahn K. 2004. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity 20, 71-85. (10.1016/S1074-7613(03)00355-8) PubMed DOI

Harvey IB, Wang X, Fremont DH. 2019. Molluscum contagiosum virus MC80 sabstages MHC-I antigen presentation by targeting tapasin for ER-associated degradation. PLOS Pathogens 15, e1007711. PubMed PMC

Luteijn RD, et al. 2014. Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP. J. Immunol. 193, 1578-1589. (10.4049/jimmunol.1400964) PubMed DOI PMC

Wycisk AI, et al. 2011. Epstein-barr viral BNLF2a protein hijacks the tail-anchored protein insertion machinery to block antigen processing by the transport complex TAP. J. Biol. Chem. 286, 41 402-41 412. (10.1074/jbc.M111.237784) PubMed DOI PMC

Sagert L, Hennig F, Thomas C, Tampé R. 2020. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. Elife 9, e55326. (10.7554/eLife.55326) PubMed DOI PMC

Padariya M, Kalathiya U, Houston DR, Alfaro JA. 2020. Recognition dynamics of cancer mutations on the ERp57-tapasin interface. Cancers (Basel) 12, 737. (10.3390/cancers12030737) PubMed DOI PMC

Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. 2016. PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 310, 27-41. (10.1016/j.cellimm.2016.09.009) PubMed DOI

Bardhan K, Anagnostou T, Boussiotis VA. 2016. The PD1: PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol. 7, 550. (10.3389/fimmu.2016.00550) PubMed DOI PMC

Schönrich G, Raftery MJ. 2019. The PD-1/PD-L1 axis and virus infections: a delicate balance. Front. Cell. Inf. Microbiol. 9, 207. (10.3389/fcimb.2019.00207) PubMed DOI PMC

Raftery MJ, Wieland D, Gronewald S, Kraus AA, Giese T, Schönrich G. 2004. Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus-encoded IL-10. J. Immunol. 173, 3383-3391. (10.4049/jimmunol.173.5.3383) PubMed DOI

Selenko-Gebauer N, et al. 2003. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J. Immunol. 170, 3637-3644. (10.4049/jimmunol.170.7.3637) PubMed DOI

Kakizaki M, Yamamoto Y, Yabuta S, Kurosaki N, Kagawa T, Kotani A. 2018. The immunological function of extracellular vesicles in hepatitis B virus-infected hepatocytes. PLoS ONE 13, 1-13. (10.1371/journal.pone.0205886) PubMed DOI PMC

Billerbeck E, et al. 2017. Mouse models of acute and chronic hepacivirus infection. Science 357, 204-208. (10.1126/science.aal1962) PubMed DOI PMC

Boon T, Van Pel A. 1989. T cell-recognized antigenic peptides derived from the cellular genome are not protein degradation products but can be generated directly by transcription and translation of short subgenic regions. A hypothesis. Immunogenetics 29, 75-79. (10.1007/BF00395854) PubMed DOI

Apcher S, Daskalogianni C, Lejeune F, Manoury B, Imhoos G, Heslop L, Fahraeus R. 2011. Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc. Natl Acad. Sci. USA 108, 11 572-11 577. (10.1073/pnas.1104104108) PubMed DOI PMC

Anton LC, Yewdell JW. 2014. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J. Leukoc. Biol. 95, 551-562. (10.1189/jlb.1113599) PubMed DOI PMC

Bennett NJ, May JS, Stevenson PG. 2005. Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol. 3, 0638-0649. (10.1371/journal.pbio.0030120) PubMed DOI PMC

Kwun HJ, da Silva SR, Shah IM, Blake N, Moore PS, Chang Y. 2007. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J. Virol. 81, 8225-8235. (10.1128/JVI.00411-07) PubMed DOI PMC

Apcher S, Daskalogianni C, Manoury B, Fåhraeus R. 2010. Epstein barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog. 6, 1-14. (10.1371/journal.ppat.1001151) PubMed DOI PMC

Schwab SR, Shugart JA, Horng T, Malarkannan S, Shastri N. 2004. Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol. 2, 1774-1784. (10.1371/journal.pbio.0020366) PubMed DOI PMC

Starck SR, Jiang V, Pavon-Eternod M, Prasad S, McCarthy B, Pan T, Shastri N. 2012. Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science 336, 1719-1723. (10.1126/science.1220270) PubMed DOI

Apcher S, Millot G, Daskalogianni C, Scherl A, Manoury B, Fahraeus R. 2013. Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc. Natl Acad. Sci. 110, 17 951-17 956. (10.1073/pnas.1309956110) PubMed DOI PMC

Yewdell JW, Dersh D, Fahraeus R. 2019. Peptide channeling: the key to MHC class I immunosurveillance? Trends Cell Biol. 29, 929-939. (10.1016/j.tcb.2019.09.004) PubMed DOI

Yewdell JW, Anton LC, Bennink JR. 1996. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol. 157, 1823-1826. PubMed

Khan S, de Giuli R, Schmidtke G, Bruns M, Buchmeier M, van den Broek M, Groettrup M. 2001. Cutting edge: neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein. J. Immunol. 167, 4801-4804. (10.4049/jimmunol.167.9.4801) PubMed DOI

Yili Y, Manoury B, Fahraeus R. 2003. Self-inhibition of synthesis and antigen presentation by epstein-barr virus-encoded EBNA1. Science 301, 1371-1374. (10.1126/science.1088902) PubMed DOI

Zaldumbide A, Ossevoort M, Wiertz EJHJ, Hoeben RC. 2007. In cis inhibition of antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma herpes virus. Mol. Immunol. 44, 1352-1360. (10.1016/j.molimm.2006.05.012) PubMed DOI

Su L, Liao Q, Wu Y, Chen X. 2011. Kaposi's sarcoma-associated herpesvirus-encoded LANA down-regulates IL-22R1 expression through a cis-acting element within the promoter region. PLoS ONE 6, e19106. (10.1371/journal.pone.0019106) PubMed DOI PMC

Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E. 1988. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124-129. (10.1038/334124a0) PubMed DOI

Phelps WC, Yee C, Munger K, Howley PM. 1988. The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell 53, 539-547. (10.1016/0092-8674(88)90570-3) PubMed DOI

Felsani A, Mileo AM, Paggi MG. 2006. Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 25, 5277-5285. (10.1038/sj.onc.1209621) PubMed DOI

Chen HZ, Tsai SY, Leone G. 2009. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785-797. (10.1038/nrc2696) PubMed DOI PMC

Roussel MF, Davis JN, Cleveland JL, Ghysdael J, Hiebert SW. 1994. Dual control of MYC expression through a single DNA binding site trageted by ETS family proteins and E2F-1. Oncogene 9, 405-415. PubMed

Wilson JB, Bell JL, Levine AJ. 1996. Expression of Epstein-Barr virus nuclear antigen-1 induced B cell neoplasia in transgenic mice. EMBO J. 15, 3117-3126. (10.1002/j.1460-2075.1996.tb00674.x) PubMed DOI PMC

Kang MS, Lu H, Yasui T, Sharpe A, Warren H, Cahir-McFarland E, Bronson R, Hung SC, Kieff E. 2005. Epstein-Barr virus nuclear antigen-1 does not induce lymphoma in transgenic FVB mice. Proc. Natl Acad. Sci. USA 102, 820-825. (10.1073/pnas.0408774102) PubMed DOI PMC

Pfeffer S, et al. 2004. Identification of virus-encoded microRNAs. Science 304, 734-736. (10.1126/science.1096781) PubMed DOI

Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L. 2018. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int. J. Biol. Sci. 14, 565-576. (10.7150/ijbs.24562) PubMed DOI PMC

Brady CS, et al. 2000. Multiple mechanisms underlie HLA dysregulation in cervical cancer. Tissue Antigens 55, 401-411. (10.1034/j.1399-0039.2000.550502.x) PubMed DOI

Lu Y, et al. 2017. Epstein-Barr virus miR-BART6-3p inhibits the RIG-I pathway. J. Innate Immun. 9, 574-586. (10.1159/000479749) PubMed DOI

Huang WT, Lin CW. 2014. EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-γ-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am. J. Pathol. 184, 1185-1197. (10.1016/j.ajpath.2013.12.024) PubMed DOI

Ojosnegros S, Perales C, Mas A, Domingo E. 2011. Quasispecies as a matter of fact: viruses and beyond., virus research. Virus Res. 162, 203-215. (10.1016/j.virusres.2011.09.018) PubMed DOI PMC

Domingo E, Sheldon J, Perales C. 2012. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev. 76, 159-216. (10.1128/MMBR.05023-11) PubMed DOI PMC

Domingo E, Perales C. 2019. Viral quasispecies. PLoS Genet. 15, e1008271. (10.1371/journal.pgen.1008271) PubMed DOI PMC

Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. 2006. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344-348. (10.1038/nature04388) PubMed DOI PMC

Fan X, Lang DM, Xu Y, Lyra AC, Yusim K, Everhart JE, Korber BT, Perelson AS, Di Bisceglie AM. 2003. Liver transplantation with hepatitis C virus-infected graft: interaction between donor and recipient viral strains. Hepatology 38, 25-33. (10.1053/jhep.2003.50264) PubMed DOI

Evans MJ, Rice CM, Goff SP. 2004. Genetic interactions between hepatitis C virus replicons. J. Virol. 78, 12 085-12 089. (10.1128/JVI.78.21.12085-12089.2004) PubMed DOI PMC

Ramírez S, et al. 2010. Hepatitis C virus superinfection of liver grafts: a detailed analysis of early exclusion of non-dominant virus strains. J. Gen. Virol. 91, 1183-1188. (10.1099/vir.0.018929-0) PubMed DOI

Villarreal LP. 2015. Force for ancient and recent life: viral and stem-loop RNA consortia promote life. Ann. NY Acad. Sci. 1341, 25-34. (10.1111/nyas.12565) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...