Viruses, cancer and non-self recognition
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33784856
PubMed Central
PMC8061760
DOI
10.1098/rsob.200348
Knihovny.cz E-zdroje
- Klíčová slova
- cancer immune evasion, major histocompatibility (MHC) class I, viral immune evasion, viral persistence, virus–host interactions,
- MeSH
- histokompatibilita - antigeny třídy I imunologie MeSH
- imunitní únik * MeSH
- lidé MeSH
- nádory imunologie MeSH
- virové nemoci imunologie virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- histokompatibilita - antigeny třídy I MeSH
Virus-host interactions form an essential part of every aspect of life, and this review is aimed at looking at the balance between the host and persistent viruses with a focus on the immune system. The virus-host interaction is like a cat-and-mouse game and viruses have developed ingenious mechanisms to manipulate cellular pathways, most notably the major histocompatibility (MHC) class I pathway, to reside within infected cell while evading detection and destruction by the immune system. However, some of the signals sensing and responding to viral infection are derived from viruses and the fact that certain viruses can prevent the infection of others, highlights a more complex coexistence between the host and the viral microbiota. Viral immune evasion strategies also illustrate that processes whereby cells detect and present non-self genetic material to the immune system are interlinked with other cellular pathways. Immune evasion is a target also for cancer cells and a more detailed look at the interfaces between viral factors and components of the MHC class I peptide-loading complex indicates that these interfaces are also targets for cancer mutations. In terms of the immune checkpoint, however, viral and cancer strategies appear different.
Department of Medical Biosciences Umeå University Building 6M 901 85 Umeå Sweden
International Centre for Cancer Vaccine Science University of Gdansk Kladki 24 80 822 Gdansk Poland
RECAMO Masaryk Memorial Cancer Institute Zluty kopec 7 65653 Brno Czech Republic
Zobrazit více v PubMed
Villarreal LP. 2005. Viruses and the evolution of life. Washington, DC: ASM Press.
Villarreal LP. 2006. How viruses shape the tree of life. Future Virol. 1, 587-595. (10.2217/17460794.1.5.587) DOI
Villarreal LP, Witzany G. 2010. Viruses are essential agents within the roots and stem of the tree of life. J Theor. Biol. 262, 698-710. (10.1016/j.jtbi.2009.10.014) PubMed DOI
Villarreal LP. 2011. Viral ancestors of antiviral systems. Viruses 3, 1933-1958. (10.3390/v3101933) PubMed DOI PMC
Yewdell JW, Reits E, Neefjes J. 2003. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat. Rev. Immunol. 3, 952-961. (10.1038/nri1250) PubMed DOI
Princiotta M, Finzi D, Qian S, Gibbs J, Schuchmann S, Buttgereit F, Bennink JR, Yewdell JW. 2003. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18, 343-354. (10.1016/S1074-7613(03)00051-7) PubMed DOI
Wei J, et al. 2017. Varied role of ubiquitylation in generating MHC class I peptide ligands. J. Immunol. 198, 3835-3845. (10.4049/jimmunol.1602122) PubMed DOI PMC
Marrack P, Scott-Browne J, Dai S, Gapin L, Kappler J. 2008. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu. Rev. Immunol. 26, 171-203. (10.1146/annurev.immunol.26.021607.090421) PubMed DOI PMC
Yin L, Scott-Browne J, Kappler J, Gapin L, Marrack P. 2012. T cells and their eons-old obsession with MHC. Immunol. Rev. 250, 49-60. (10.1111/imr.12004) PubMed DOI PMC
Villarreal LP, Defilippis VR, Gottlieb KA. 2000. Acute and persistent viral life strategies and their relationship to emerging diseases. Virology 272, 1-6. (10.1006/viro.2000.0381) PubMed DOI
Forte E, Zhang Z, Thorp EB, Hummel M. 2020. Cytomegalovirus latency and reactivation: an intricate interplay with the host immune response. Front. Cell. Inf. Microbiol. 10, 130. (10.3389/fcimb.2020.00130) PubMed DOI PMC
Cesarman E. 2014. Gammaherpesviruses and lymphoproliferative disorders. Annu. Rev. Pathol. Mech. Dis. 9, 349-372. (10.1146/annurev-pathol-012513-104656) PubMed DOI
Das C, Hansen KC, Tyler JKLMS. 2017. The virome in host health and disease Ken. Physiol. Behav. 176, 139-148. (10.1016/j.physbeh.2017.03.040) PubMed DOI PMC
Gnanasundram SV, Pyndiah S, Daskalogianni C, Armfield K, Nylander K, Wilson JB, Fåhraeus R. 2017. PI3 Kδ activates E2F1 synthesis in response to mRNA translation stress. Nat. Commun. 8, 2103. (10.1038/s41467-017-02282-w) PubMed DOI PMC
Gnanasundram SV, Fåhraeus R. 2018. Translation stress regulates ribosome synthesis and cell proliferation. Int. J. Mol. Sci. 19, 3757. (10.3390/ijms19123757) PubMed DOI PMC
Prado Martins R, Fahraeus R. 2017. A matter of maturity: the impact of pre-MRNA processing in gene expression and antigen presentation. Int. J. Biochem. Cell Biol. 91, 203-211. (10.1016/j.biocel.2017.05.023) PubMed DOI
Seliger B, Ritz U, Ferrone S. 2006. Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation. Int. J. Cancer 118, 129-138. (10.1002/ijc.21312) PubMed DOI
Volff JN. 2006. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28, 913-922. (10.1002/bies.20452) PubMed DOI
Mattick JS. 2009. Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann. NY Acad. Sci. 1178, 29-46. (10.1111/j.1749-6632.2009.04991.x) PubMed DOI
Villarreal LP, Witzany G. 2013. The DNA habitat and its RNA inhabitants: at the dawn of RNA sociology. Genomics Insights 6, 1-12. (10.4137/GEI.S11490) PubMed DOI PMC
Moelling K. 2013. What contemporary viruses tell us about evolution: a personal view. Arch. Virol. 158, 1833-1848. (10.1007/s00705-013-1679-6) PubMed DOI PMC
Blond J-L, Besème F, Duret L, Bouton O, Bedin F, Perron H, Mandrand B, Mallet F. 1999. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J. Virol. 73, 1175-1185. (10.1128/JVI.73.2.1175-1185.1999) PubMed DOI PMC
Haig D. 2012. Retroviruses and the placenta. Curr. Biol. 22, R609-R613. (10.1016/j.cub.2012.06.002) PubMed DOI
Villarreal LP. 2016. Viruses and the placenta: the essential virus first view. APMIS. Blackwell Munksgaard 124, 20-30. (10.1111/apm.12485) PubMed DOI
Borza CM, Hutt-Fletcher LM. 2002. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat. Med. 8, 594-599. (10.1038/nm0602-594) PubMed DOI
Fries KL, Sculley TB, Webster-Cyriaque J, Rajadurai P, Sadler RH, Raab-Traub N. 1997. Identification of a novel protein encoded by the BamHI A region of the Epstein-Barr virus. J. Virol. 71, 2765-2771. (10.1128/JVI.71.4.2765-2771.1997) PubMed DOI PMC
Neves M, Marinho-Dias J, Ribeiro J, Sousa H. 2017. Epstein–Barr virus strains and variations: geographic or disease-specific variants? J. Med. Virol. 89, 373-387. (10.1002/jmv.24633) PubMed DOI
Geisler J, Touma J, Rahbar A, Söderberg-Nauclér C, Vetvik K. 2019. A review of the potential role of human cytomegalovirus (HCMV) infections in breast cancer carcinogenesis and abnormal immunity. Cancers 11, 1842. (10.3390/cancers11121842) PubMed DOI PMC
Zuhair M, Smit GSA, Wallis G, Jabbar F, Smith C, Devleesschauwer B, Griffiths P. 2019. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev. Med. Virol. 29, e2034. (10.1002/rmv.2034) PubMed DOI
Mesri EA, Cesarman E, Boshoff C. 2010. Kaposi's sarcoma and its associated herpesvirus. Nature Reviews Cancer. Nat. Rev. Cancer 10, 707-719. (10.1038/nrc2888) PubMed DOI PMC
Hayward GS. 1999. KSHV strains: the origins and global spread of the virus. Semin Cancer Biol. 9, 187-199. (10.1006/scbi.1998.0116) PubMed DOI
Pope JH. 1967. Establishment of cell lines from peripheral leucocytes in infectious mononucleosis. Nature 216, 810-811. (10.1038/216810a0) PubMed DOI
Henle W. 1968. Evidence for viruses in acute leukemia and Burkitt's tumor. Cancer 21, 580-586. (10.1002/1097-0142(196804)21:4<580::AID-CNCR2820210406>3.0.CO;2-Q) PubMed DOI
Mrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, Hammerschmidt W. 2019. Epstein–Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc. Natl Acad. Sci. USA 116, 16 046-16 055. (10.1073/pnas.1901314116) PubMed DOI PMC
Shannon-Lowe C, Rickinson AB, Bell AI. 2017. Epstein-barr virus-associated lymphomas. Phil.Trans. R. Soc. B Biol. Sci. 372, 20160271. (10.1098/rstb.2016.0271) PubMed DOI PMC
Shannon-Lowe C, Rickinson A. 2019. The global landscape of EBV-associated tumors. Front. Oncol. 9, 713. (10.3389/fonc.2019.00713) PubMed DOI PMC
Homberger FR. 1997. Enterotropic mouse hepatitis virus. Lab. Anim. 31, 97-115. (10.1258/002367797780600189) PubMed DOI
Villarreal LP. 2009. Persistence pays: how viruses promote host group survival. Curr. Opin. Microbiol. 12, 467-472. (10.1016/j.mib.2009.06.014) PubMed DOI PMC
Villarreal LP, Witzany G. 2019. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann. NY Acad. Sci. 1447, 5-20. (10.1111/nyas.14040) PubMed DOI
Chrétien I, Marcuz A, Courtet M, Katevuo K, Vainio O, Heath JK, White SJ, Du Pasquier L. 1998. CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. Eur. J. Immunol. 28, 4094-4104. (10.1002/(SICI)1521-4141(199812)28:12<4094::AID-IMMU4094>3.0.CO;2-2) PubMed DOI
Du Pasquier L, Zucchetti I, De Santis R. 2004. Immunoglobulin superfamily receptors in protochordates: before RAG time. Immunol. Rev. 198, 233-248. (10.1111/j.0105-2896.2004.00122.x) PubMed DOI
Lehnherr H, Maguin E, Jafri S, Yarmolinsky MB. 1993. Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 233, 414-428. (10.1006/jmbi.1993.1521) PubMed DOI
Villarreal LP. 2009. Origin of group identity: viruses, addiction, and cooperation. Berlin, Germany: Springer.
Villarreal LP. 2016. Persistent virus and addiction modules: an engine of symbiosis. Curr. Opin. Microbiol. 31, 70-79. (10.1016/j.mib.2016.03.005) PubMed DOI
Roach DR, Leung CY, Henry M, Morello E, Singh D, Di Santo JP, Weitz JS, Debarbieux L. 2017. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38-47.e4. (10.1016/j.chom.2017.06.018) PubMed DOI
Ott SJ, et al. 2017. Efficacy of sterile fecal filtrate transfer for treating patients with clostridium difficile infection. Gastroenterology 152, 799-811.e7. (10.1053/j.gastro.2016.11.010) PubMed DOI
Maurice CF. 2019. Considering the other half of the gut microbiome: bacteriophages. mSystems 4, e00102-19. (10.1128/mSystems.00102-19) PubMed DOI PMC
Khadijah S, Neo SY, Hossain MS, Miller LD, Mathavan S, Kwang J. 2003. Identification of white spot syndrome virus latency-related genes in specific-pathogen-free shrimps by use of a microarray. J. Virol. 77, 10 162-10 167. (10.1128/JVI.77.18.10162-10167.2003) PubMed DOI PMC
Wang Z, Hu L, Yi G, Xu H, Qi Y, Yao L. 2004. ORF390 of white spot syndrome virus genome is identified as a novel anti-apoptosis gene. Biochem. Biophys. Res. Commun. 325, 899-907. (10.1016/j.bbrc.2004.09.224) PubMed DOI
Flajnik MF. 1994. Primitive vertebrate immunity: what is the evolutionary derivative of molecules that define the adaptive immune system? Ciba Foundation symp. 186, 224-232. discussion 233-6. PubMed
Flajnik MF, Kasahara M. 2001. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15, 351-362. (10.1016/S1074-7613(01)00198-4) PubMed DOI
Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF. 2006. Ancestral organization of the MHC revealed in the amphibian Xenopus. J. Immunol. 176, 3674-3685. (10.4049/jimmunol.176.6.3674) PubMed DOI
Flajnik MF. 2014. Re-evaluation of the immunological big bang. Curr. Biol. 24, R1060-R1065. (10.1016/j.cub.2014.09.070) PubMed DOI PMC
Villarreal LP. 2009. The source of self: genetic parasites and the origin of adaptive immunity. Ann. NY Acad. Sci. 1178, 194-232. (10.1111/j.1749-6632.2009.05020.x) PubMed DOI
Chuong EB, Elde NC, Feschotte C. 2016. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083-1087. (10.1126/science.aad5497) PubMed DOI PMC
Du Pasquier L. 2004. Speculations on the origin of the vertebrate immune system. Immunol. Lett. 92, 3-9. (10.1016/j.imlet.2003.10.012) PubMed DOI
Dreyfus DH, Jones JF, Gelfand EW. 1999. Asymmetric DDE (D35E)-like sequences in the RAG proteins: implications for V(D)J recombination and retroviral pathogenesis. Med. Hypotheses 52, 545-549. (10.1054/mehy.1997.0691) PubMed DOI
Clark PM, Chitnis N, Shieh M, Kamoun M, Johnson FB, Monos D. 2018. Novel and haplotype specific microRNAs encoded by the major histocompatibility complex. Sci. Rep. 8, 3832. (10.1038/s41598-018-19427-6) PubMed DOI PMC
Chitnis N, Clark PM, Kamoun M, Stolle C, Johnson FB, Monos DS. 2017. An expanded role for HLA genes: HLA-B encodes a microRNA that regulates IgA and other immune response transcripts. Front. Immunol. 8, 583. (10.3389/fimmu.2017.00583) PubMed DOI PMC
Kulski JK. 2019. Long noncoding RNA HCP5, a hybrid HLA class I endogenous retroviral gene: structure, expression, and disease associations. Cells 8, 480. (10.3390/cells8050480) PubMed DOI PMC
Gaudieri S, Giles KM, Kulski JK, Dawkins RL. 1997. Duplication and polymorphism in the MHC: Alu generated diversity and polymorphism within the PERB11 gene family. Hereditas 127, 37-46. (10.1111/j.1601-5223.1997.00037.x) PubMed DOI
Kulski JK, Gaudieri S, Bellgard M, Balmer L, Giles K, Inoko H, Dawkins RL. 1997. The evolution of MHC diversity by segmental duplication and transposition of retroelements. J. Mol. Evol. 45, 599-609. (10.1007/PL00006264) PubMed DOI
Kulski JK, Gaudieri S, Inoko H, Dawkins RL. 1999. Comparison between two human endogenous retrovirus (HERV)-rich regions within the major histocompatibility complex. J. Mol. Evol. 48, 675-683. (10.1007/PL00006511) PubMed DOI
Kulski JK, Gaudieri S, Martin A, Dawkins RL. 1999. Coevolution of PERB11 (MIC) and HLA class I genes with HERV-16 and retroelements by extended genomic duplication. J. Mol. Evol. 49, 84-97. (10.1007/PL00006537) PubMed DOI
Olgun G, Sahin O, Tastan O. 2018. Discovering lncRNA mediated sponge interactions in breast cancer molecular subtypes. BMC Genomics 19, 1-2. (10.1186/s12864-018-5006-1) PubMed DOI PMC
Teng H, Wang P, Xue Y, Liu X, Ma J, Cai H, Xi Z, Li Z, Liu Y. 2016. Role of HCP5-miR-139-RUNX1 feedback loop in regulating malignant behavior of Glioma cells. Mol. Ther. 24, 1806-1822. (10.1038/mt.2016.103) PubMed DOI PMC
Blees A, Januliene D, Hofmann T, Koller N, Schmidt C, Trowitzsch S, Moeller A, Tampé R. 2017. Structure of the human MHC-I peptide-loading complex. Nature 551, 525-528. (10.1038/nature24627) PubMed DOI
Eggensperger S, Tampé R. 2015. The transporter associated with antigen processing: a key player in adaptive immunity. Biol. Chem. 396, 1059-1072. (10.1515/hsz-2014-0320) PubMed DOI
Oldham ML, Grigorieff N, Chen J. 2016. Structure of the transporter associated with antigen processing trapped by herpes simplex virus. Elife 5, e21829. (10.7554/eLife.21829) PubMed DOI PMC
De La Salle H, et al. 1994. Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science 265, 237-241. (10.1126/science.7517574) PubMed DOI
Teisserenc H, Schmitt W, Blake N, Dunbar R, Gadola S, Gross WL, Exley A, Cerundolo V. 1997. A case of primary immunodeficiency due to a defect of the major histocompatibility gene complex class I processing and presentation pathway. Immunol. Lett. 57, 183-187. (10.1016/S0165-2478(97)00072-2) PubMed DOI
Gadola SD, Moins-Teisserenc HT, Trowsdale J, Gross WL, Cerundolo V. 2000. TAP deficiency syndrome. Clin. Exp. Immunol. 121, 173-178. (10.1046/j.1365-2249.2000.01264.x) PubMed DOI PMC
De La Salle H, et al. 1997. Human peptide transporter deficiency: importance of HLA-B in the presentation of TAP-independent EBV antigens. J. Immunol. 158, 4555-4563. PubMed
Lautscham G, Mayrhofer S, Taylor G, Haigh T, Leese A, Rickinson A, Blake N. 2001. Processing of a multiple membrane spanning Epstein-Barr virus protein for CD8+ T cell recognition reveals a proteasome-dependent, transporter associated with antigen processing-independent pathway. J. Exp. Med. 194, 1053-1068. (10.1084/jem.194.8.1053) PubMed DOI PMC
Lautscham G, Rickinson A, Blake N. 2003. TAP-independent antigen presentation on MHC class I molecules: lessons from Epstein-Barr virus. Microbes Infection 5, 291-299. (10.1016/S1286-4579(03)00031-5) PubMed DOI
Del Val M, Antón LC, Ramos M, Muñoz-Abad V, Campos-Sánchez E. 2020. Endogenous TAP-independent MHC-I antigen presentation: not just the ER lumen. Curr. Opin. Immunol. 64, 9-14. (10.1016/j.coi.2019.12.003) PubMed DOI
Nöll A, et al. 2017. Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proc. Natl Acad. Sci. USA 114, E438-E447. (10.1073/pnas.1620009114) PubMed DOI PMC
Neefjes J, Marlieke LMJ, Petra P, Oddmund B. 2011. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823-836. (10.1038/nri3084) PubMed DOI
Garstka MA, et al. 2015. The first step of peptide selection in antigen presentation by MHC class I molecules. Proc. Natl Acad. Sci. USA 112, 1505-1510. (10.1073/pnas.1416543112) PubMed DOI PMC
Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P. 2013. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 5, 1-15. (10.1101/cshperspect.a013169) PubMed DOI PMC
Hoseki J, Ushioda R, Nagata K. 2010. Mechanism and components of endoplasmic reticulum-associated degradation. J. Biochem. 147, 19-25. (10.1093/jb/mvp194) PubMed DOI
Lopata A, Kniss A, Löhr F, Rogov VV, Dötsch V. 2020. Ubiquitination in the erad process. Int. J. Mol. Sci. 21, 1-21. (10.3390/ijms21155369) PubMed DOI PMC
Nakatsukasa K, Brodsky JL. 2008. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9, 861-870. (10.1111/j.1600-0854.2008.00729.x) PubMed DOI PMC
Van den Boomen DJH, Lehner PJ. 2015. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I. Mol. Immunol. 68, 106-111. (10.1016/j.molimm.2015.07.005) PubMed DOI PMC
van de Weijer ML, Schuren ABC, Boomen DJH, Mulder A, Claas FHJ, Lehner PJ, Lebbink RJ, Wiertz EJHJ. 2017. Multiple E2 ubiquitin-conjugating enzymes regulate human cytomegalovirus US2-mediated immunoreceptor downregulation. J. Cell Sci. 130, 2883-2892. (10.1242/jcs.206839) PubMed DOI PMC
Cerami E, et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404. (10.1158/2159-8290.CD-12-0095) PubMed DOI PMC
Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL, Wiley DC. 2001. Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc. Natl Acad. Sci. USA 98, 6794-6799. (10.1073/pnas.121172898) PubMed DOI PMC
Li L, Santarsiero BD, Bouvier M. 2016. Structure of the adenovirus type 4 (Species E) E3-19 K/HLA-A2 complex reveals species-specific features in MHC class I recognition. J. Immunol. 197, 1399-1407. (10.4049/jimmunol.1600541) PubMed DOI PMC
Sester M, Ruszics Z, Mackley E, Burgert H-G. 2013. The transmembrane domain of the adenovirus E3/19 K protein acts as an endoplasmic reticulum retention signal and contributes to intracellular sequestration of major histocompatibility complex class I molecules. J. Virol. 87, 6104-6117. (10.1128/JVI.03391-12) PubMed DOI PMC
Berry R, Watson GM, Jonjic S, Degli-Esposti MA, Rossjohn J. 2020. Modulation of innate and adaptive immunity by cytomegaloviruses. Nat. Rev. Immunol. 20, 113-127. (10.1038/s41577-019-0225-5) PubMed DOI
Waterhouse A, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296-W303. (10.1093/nar/gky427) PubMed DOI PMC
Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z. 2014. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30, 1771-1773. (10.1093/bioinformatics/btu097) PubMed DOI PMC
Parcej D, Tampé R. 2010. ABC proteins in antigen translocation and viral inhibition. Nat. Chem. Biol. 6, 572-580. (10.1038/nchembio.410) PubMed DOI
Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJHJ, Ploegh HL, Peterson PA, Yang Y, Früh K. 1997. The ER-luminal domain of the HCMV glypcoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613-621. (10.1016/S1074-7613(00)80349-0) PubMed DOI
Yang Z, Bjorkman PJ. 2008. Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc. Natl Acad. Sci. USA 105, 10 095-10 100. (10.1073/pnas.0804551105) PubMed DOI PMC
Lehner PJ, Karttunen JT, Wilkinson GWG, Cresswell P. 1997. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc. Natl Acad. Sci. USA 94, 6904-6909. (10.1073/pnas.94.13.6904) PubMed DOI PMC
Verweij MC, Horst D, Griffin BD, Luteijn RD, Davison AJ, Ressing ME, Wiertz EJ. 2015. Viral inhibition of the transporter associated with antigen processing (TAP): a striking example of functional convergent evolution. PLoS Pathogens 11, e1004743. (10.1371/journal.ppat.1004743) PubMed DOI PMC
Hewitt EW. 2003. The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110, 163-169. (10.1046/j.1365-2567.2003.01738.x) PubMed DOI PMC
Park B, Kim Y, Shin J, Lee S, Cho K, Früh K, Lee S, Ahn K. 2004. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity 20, 71-85. (10.1016/S1074-7613(03)00355-8) PubMed DOI
Harvey IB, Wang X, Fremont DH. 2019. Molluscum contagiosum virus MC80 sabstages MHC-I antigen presentation by targeting tapasin for ER-associated degradation. PLOS Pathogens 15, e1007711. PubMed PMC
Luteijn RD, et al. 2014. Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP. J. Immunol. 193, 1578-1589. (10.4049/jimmunol.1400964) PubMed DOI PMC
Wycisk AI, et al. 2011. Epstein-barr viral BNLF2a protein hijacks the tail-anchored protein insertion machinery to block antigen processing by the transport complex TAP. J. Biol. Chem. 286, 41 402-41 412. (10.1074/jbc.M111.237784) PubMed DOI PMC
Sagert L, Hennig F, Thomas C, Tampé R. 2020. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. Elife 9, e55326. (10.7554/eLife.55326) PubMed DOI PMC
Padariya M, Kalathiya U, Houston DR, Alfaro JA. 2020. Recognition dynamics of cancer mutations on the ERp57-tapasin interface. Cancers (Basel) 12, 737. (10.3390/cancers12030737) PubMed DOI PMC
Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. 2016. PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 310, 27-41. (10.1016/j.cellimm.2016.09.009) PubMed DOI
Bardhan K, Anagnostou T, Boussiotis VA. 2016. The PD1: PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol. 7, 550. (10.3389/fimmu.2016.00550) PubMed DOI PMC
Schönrich G, Raftery MJ. 2019. The PD-1/PD-L1 axis and virus infections: a delicate balance. Front. Cell. Inf. Microbiol. 9, 207. (10.3389/fcimb.2019.00207) PubMed DOI PMC
Raftery MJ, Wieland D, Gronewald S, Kraus AA, Giese T, Schönrich G. 2004. Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus-encoded IL-10. J. Immunol. 173, 3383-3391. (10.4049/jimmunol.173.5.3383) PubMed DOI
Selenko-Gebauer N, et al. 2003. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J. Immunol. 170, 3637-3644. (10.4049/jimmunol.170.7.3637) PubMed DOI
Kakizaki M, Yamamoto Y, Yabuta S, Kurosaki N, Kagawa T, Kotani A. 2018. The immunological function of extracellular vesicles in hepatitis B virus-infected hepatocytes. PLoS ONE 13, 1-13. (10.1371/journal.pone.0205886) PubMed DOI PMC
Billerbeck E, et al. 2017. Mouse models of acute and chronic hepacivirus infection. Science 357, 204-208. (10.1126/science.aal1962) PubMed DOI PMC
Boon T, Van Pel A. 1989. T cell-recognized antigenic peptides derived from the cellular genome are not protein degradation products but can be generated directly by transcription and translation of short subgenic regions. A hypothesis. Immunogenetics 29, 75-79. (10.1007/BF00395854) PubMed DOI
Apcher S, Daskalogianni C, Lejeune F, Manoury B, Imhoos G, Heslop L, Fahraeus R. 2011. Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc. Natl Acad. Sci. USA 108, 11 572-11 577. (10.1073/pnas.1104104108) PubMed DOI PMC
Anton LC, Yewdell JW. 2014. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J. Leukoc. Biol. 95, 551-562. (10.1189/jlb.1113599) PubMed DOI PMC
Bennett NJ, May JS, Stevenson PG. 2005. Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol. 3, 0638-0649. (10.1371/journal.pbio.0030120) PubMed DOI PMC
Kwun HJ, da Silva SR, Shah IM, Blake N, Moore PS, Chang Y. 2007. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J. Virol. 81, 8225-8235. (10.1128/JVI.00411-07) PubMed DOI PMC
Apcher S, Daskalogianni C, Manoury B, Fåhraeus R. 2010. Epstein barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog. 6, 1-14. (10.1371/journal.ppat.1001151) PubMed DOI PMC
Schwab SR, Shugart JA, Horng T, Malarkannan S, Shastri N. 2004. Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol. 2, 1774-1784. (10.1371/journal.pbio.0020366) PubMed DOI PMC
Starck SR, Jiang V, Pavon-Eternod M, Prasad S, McCarthy B, Pan T, Shastri N. 2012. Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science 336, 1719-1723. (10.1126/science.1220270) PubMed DOI
Apcher S, Millot G, Daskalogianni C, Scherl A, Manoury B, Fahraeus R. 2013. Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc. Natl Acad. Sci. 110, 17 951-17 956. (10.1073/pnas.1309956110) PubMed DOI PMC
Yewdell JW, Dersh D, Fahraeus R. 2019. Peptide channeling: the key to MHC class I immunosurveillance? Trends Cell Biol. 29, 929-939. (10.1016/j.tcb.2019.09.004) PubMed DOI
Yewdell JW, Anton LC, Bennink JR. 1996. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol. 157, 1823-1826. PubMed
Khan S, de Giuli R, Schmidtke G, Bruns M, Buchmeier M, van den Broek M, Groettrup M. 2001. Cutting edge: neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein. J. Immunol. 167, 4801-4804. (10.4049/jimmunol.167.9.4801) PubMed DOI
Yili Y, Manoury B, Fahraeus R. 2003. Self-inhibition of synthesis and antigen presentation by epstein-barr virus-encoded EBNA1. Science 301, 1371-1374. (10.1126/science.1088902) PubMed DOI
Zaldumbide A, Ossevoort M, Wiertz EJHJ, Hoeben RC. 2007. In cis inhibition of antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma herpes virus. Mol. Immunol. 44, 1352-1360. (10.1016/j.molimm.2006.05.012) PubMed DOI
Su L, Liao Q, Wu Y, Chen X. 2011. Kaposi's sarcoma-associated herpesvirus-encoded LANA down-regulates IL-22R1 expression through a cis-acting element within the promoter region. PLoS ONE 6, e19106. (10.1371/journal.pone.0019106) PubMed DOI PMC
Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E. 1988. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124-129. (10.1038/334124a0) PubMed DOI
Phelps WC, Yee C, Munger K, Howley PM. 1988. The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell 53, 539-547. (10.1016/0092-8674(88)90570-3) PubMed DOI
Felsani A, Mileo AM, Paggi MG. 2006. Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 25, 5277-5285. (10.1038/sj.onc.1209621) PubMed DOI
Chen HZ, Tsai SY, Leone G. 2009. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785-797. (10.1038/nrc2696) PubMed DOI PMC
Roussel MF, Davis JN, Cleveland JL, Ghysdael J, Hiebert SW. 1994. Dual control of MYC expression through a single DNA binding site trageted by ETS family proteins and E2F-1. Oncogene 9, 405-415. PubMed
Wilson JB, Bell JL, Levine AJ. 1996. Expression of Epstein-Barr virus nuclear antigen-1 induced B cell neoplasia in transgenic mice. EMBO J. 15, 3117-3126. (10.1002/j.1460-2075.1996.tb00674.x) PubMed DOI PMC
Kang MS, Lu H, Yasui T, Sharpe A, Warren H, Cahir-McFarland E, Bronson R, Hung SC, Kieff E. 2005. Epstein-Barr virus nuclear antigen-1 does not induce lymphoma in transgenic FVB mice. Proc. Natl Acad. Sci. USA 102, 820-825. (10.1073/pnas.0408774102) PubMed DOI PMC
Pfeffer S, et al. 2004. Identification of virus-encoded microRNAs. Science 304, 734-736. (10.1126/science.1096781) PubMed DOI
Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L. 2018. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int. J. Biol. Sci. 14, 565-576. (10.7150/ijbs.24562) PubMed DOI PMC
Brady CS, et al. 2000. Multiple mechanisms underlie HLA dysregulation in cervical cancer. Tissue Antigens 55, 401-411. (10.1034/j.1399-0039.2000.550502.x) PubMed DOI
Lu Y, et al. 2017. Epstein-Barr virus miR-BART6-3p inhibits the RIG-I pathway. J. Innate Immun. 9, 574-586. (10.1159/000479749) PubMed DOI
Huang WT, Lin CW. 2014. EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-γ-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am. J. Pathol. 184, 1185-1197. (10.1016/j.ajpath.2013.12.024) PubMed DOI
Ojosnegros S, Perales C, Mas A, Domingo E. 2011. Quasispecies as a matter of fact: viruses and beyond., virus research. Virus Res. 162, 203-215. (10.1016/j.virusres.2011.09.018) PubMed DOI PMC
Domingo E, Sheldon J, Perales C. 2012. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev. 76, 159-216. (10.1128/MMBR.05023-11) PubMed DOI PMC
Domingo E, Perales C. 2019. Viral quasispecies. PLoS Genet. 15, e1008271. (10.1371/journal.pgen.1008271) PubMed DOI PMC
Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. 2006. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344-348. (10.1038/nature04388) PubMed DOI PMC
Fan X, Lang DM, Xu Y, Lyra AC, Yusim K, Everhart JE, Korber BT, Perelson AS, Di Bisceglie AM. 2003. Liver transplantation with hepatitis C virus-infected graft: interaction between donor and recipient viral strains. Hepatology 38, 25-33. (10.1053/jhep.2003.50264) PubMed DOI
Evans MJ, Rice CM, Goff SP. 2004. Genetic interactions between hepatitis C virus replicons. J. Virol. 78, 12 085-12 089. (10.1128/JVI.78.21.12085-12089.2004) PubMed DOI PMC
Ramírez S, et al. 2010. Hepatitis C virus superinfection of liver grafts: a detailed analysis of early exclusion of non-dominant virus strains. J. Gen. Virol. 91, 1183-1188. (10.1099/vir.0.018929-0) PubMed DOI
Villarreal LP. 2015. Force for ancient and recent life: viral and stem-loop RNA consortia promote life. Ann. NY Acad. Sci. 1341, 25-34. (10.1111/nyas.12565) PubMed DOI