Phenomenology of quantum turbulence in superfluid helium
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
33790051
PubMed Central
PMC8072252
DOI
10.1073/pnas.2018406118
PII: 2018406118
Knihovny.cz E-zdroje
- Klíčová slova
- Vinen and Kolmogorov turbulence, pure superfluid state, quantum turbulence, two-fluid state,
- Publikační typ
- časopisecké články MeSH
Quantum turbulence-the stochastic motion of quantum fluids such as 4He and 3He-B, which display pure superfluidity at zero temperature and two-fluid behavior at finite but low temperatures-has been a subject of intense experimental, theoretical, and numerical studies over the last half a century. Yet, there does not exist a satisfactory phenomenological framework that captures the rich variety of experimental observations, physical properties, and characteristic features, at the same level of detail as incompressible turbulence in conventional viscous fluids. Here we present such a phenomenology that captures in simple terms many known features and regimes of quantum turbulence, in both the limit of zero temperature and the temperature range of two-fluid behavior.
Faculty of Mathematics and Physics Charles University 121 16 Prague Czech Republic
Faculty of Mathematics and Physics Charles University 121 16 Prague Czech Republic;
Zobrazit více v PubMed
Frisch U., Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995).
Skrbek L., Sreenivasan K. R., Developed quantum turbulence and its decay. Phys. Fluids 24, 011301 (2012).
Barenghi C. F., Skrbek L., Sreenivasan K. R., Introduction to quantum turbulence. Proc. Natl. Acad. Sci. U.S.A. 111, 4647 (2014). PubMed PMC
Tilley D. R., Tilley J., Superfluidity and Superconductivity (Institute of Physics Publishing, 1986).
Onsager L., In discussion on paper by C. J. Gorter. Nuovo Cimento 6 (suppl. 2, 249 (1949).
Feynman R. P., “Application of quantum mechanics to liquid helium” in Progress in Low Temperature Physics, Gorter C. J., Ed. (North Holland, Amsterdam, The Netherlands, 1955), vol. 1, pp. 493–515.
Birkhoff G., Fourier synthesis of homogeneous turbulence. Commun. Pure Appl. Math. 7, 19 (1954).
Saffman P. G., The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581 (1967).
Sreenivasan K. R., On the universality of the Kolmogorov constant. Phys. Fluids 7, 27788 (1995).
Stalp S. R., Skrbek L., Donnelly R. J., Decay of grid turbulence in a finite channel. Phys. Rev. Lett. 82, 4831 (1999). PubMed
L’vov V. S., Skrbek L., Sreenivasan K. R., Viscosity of liquid 4He and quantum of circulation: Are they related?. Phys. Fluids 26, 041703 (2014).
Svistunov B., Superfluid turbulence in the low-temperature limit. Phys. Rev. B 52, 3647 (1995). PubMed
Donzis D. A., Sreenivasan K. R., The bottleneck effect and the Kolmogorov constant in isotropic turbulence. J. Fluid Mech. 657, 171–188 (2010).
diLeoni P. C., Mininni P., Brachet M. E., Dual cascade and dissipation mechanisms in helical quantum turbulence. Phys. Rev. A 95, 053636 (2017).
Vinen W. F., Decay of superfluid turbulence at a very low temperature: The radiation of sound from a Kelvin wave on a quantized vortex. Phys. Rev. B 64, 134520 (2001).
Silaev M. A., Universal mechanism of dissipation in Fermi superfluids at ultralow temperatures. Phys. Rev. Lett. 108, 045303 (2012). PubMed
L’vov V. S., Nazarenko S., Spectrum of Kelvin-wave turbulence in superfluids. JETP Lett. 91, 464 (2010).
Boue L.et al. ., Exact solution for the energy spectrum of Kelvin wave turbulence in superfluids. Phys. Rev. B 84, 064516 (2011).
Tanogami T., Theoretical analysis of quantum turbulence using the Onsager “ideal turbulence” theory. arXiv:2009.11057v1 (23 September 2020). PubMed
Vinen W. F., Classical character of turbulence in a quantum liquid. Phys. Rev. B 61, 1410 (2000).
Awschalom D. D., Schwarz K. W., Observation of a remanent vortex-line density in superfluid helium. Phys. Rev. Lett. 52, 49–52 (1984).
Glaberson W. I., Johnson W. W., Ostermeier R. M., Instability of a vortex array in He II. Phys. Rev. Lett. 33, 1197 (1974).
Vinen W., Mutual friction in a heat current in liquid helium
Skrbek L., Stalp S., On the decay of homogeneous isotropic turbulence. Phys. Fluids 12, 1997 (2000).
Skrbek L., Sreenivasan K. R., “How similar is quantum turbulence to classical turbulence”? in Ten Chapters of Turbulence, Davidson P. A., Kaneda Y., Moffatt H. K., Sreenivasan K. R., Eds. (Cambridge University Press, 2013), chap. 10.
Tsepelin V.et al. ., Visualization of quantum turbulence in superfluid 3He-B: Combined numerical and experimental study of Andreev reflection. Phys. Rev. B 96, 054510 (2017).
Fisher S. N., Pickett G. R., “Quantum turbulence in superfluid 3He at very low temperatures” in Progress in Low Temperature Physics XVI, Tsubota M., Halperin W. P., Eds. (Elsevier, 2009), vol. XVI, pp. 147–194.
Bradley D. I.et al. ., Emission of discrete vortex rings by a vibrating grid in superfluid 3He-B: A precursor to quantum turbulence. Phys. Rev. Lett. 95, 035302 (2005). PubMed
Bradley D. I.et al. ., Decay of pure quantum turbulence in superfluid 3He-B. Phys. Rev. Lett. 96, 035301 (2006). PubMed
Bradley D. I.et al. ., Vortex generation in superfluid He-3 by a vibrating grid. J. Low Temp. Phys. 134, 381 (2004).
Bradley D. I.et al. ., Direct measurement of the energy dissipated by quantum turbulence. Nat. Phys. 7, 473 (2011).
Schmoranzer D., et al. ., Multiple critical velocities in oscillatory flow of superfluid 4He due to quartz tuning forks. Phys. Rev. B 94, 214503 (2016).
Hanninen R., Schoepe W., Universal onset of quantum turbulence in oscillating flows and crossover to steady flows. J. Low Temp. Phys. 158, 410 (2010).
Walmsley P. M., Golov A. I., Hall H. E., Levchenko A. A., Vinen W. F., Dissipation of quantum turbulence in the zero temperature limit. Phys. Rev. Lett. 99, 265302 (2007). PubMed
Walmsley P. M., Golov A. I., Quantum and quasiclassical types of superfluid turbulence. Phys. Rev. Lett. 100, 245301 (2008). PubMed
Walmsley P. M., Golov A. I., Coexistence of quantum and classical flows in quantum turbulence in the T=0 limit. Phys. Rev. Lett. 118, 134501 (2017). PubMed
Schmoranzer D.et al. ., Dynamical similarity and instabilities in high Stokes number oscillatory flows of superfluid helium. Phys. Rev. B 99, 054511 (2019).
Bevan T. D. C.et al. ., Vortex mutual friction in superfluid He-3. J. Low Temp. Phys. 109, 423 (1997).
Finne A. P.et al. ., Observation of an intrinsic velocity-independent criterion for superfluid turbulence. Nature 424, 1022 (2003). PubMed
Vinen W. F., Theory of quantum grid turbulence in superfluid 3He-B. Phys. Rev. B 71, 024513 (2005).
L’vov V. S., Nazarenko S. V., Volovik G. E., Energy spectra of developed superfluid turbulence. JETP Lett. 80, 479 (2004).
Donnelly R. J., Barenghi C. F., The observed properties of liquid helium at saturated vapor pressure. J. Phys. Chem. Ref. Data 27, 1217 (1998).
Milliken F., Schwarz K., Smith C., Free decay of superfluid turbulence. Phys. Rev. Lett. 48, 1204 (1982).
Boue L.et al. ., Enhancement of intermittency in superfluid turbulence. Phys. Rev. Lett. 110, 064516 (2013). PubMed
Varga E., Guo W., Gao J., Skrbek L., Intermittency enhancement in quantum turbulence in superfluid 4He. Phys. Rev. Fluids 3, 094601 (2018).
Maurer J., Tabeling P., Local investigation of superfluid turbulence. Europhys. Lett. 43, 29 (1998).
Salort J.et al. ., Turbulent velocity spectra in superfluid flows. Phys. Fluids 22, 125102 (2010).
Salort J., Chabaud B., Leveque E., Roche P. E., Energy cascade and the four-fifths law in superfluid turbulence. Europhys. Lett. 97, 34006 (2012).
Marakov A.et al. ., Visualization of the normal-fluid turbulence in counterflowing superfluid He-4. Phys. Rev. B 91, 094503 (2015).
Babuin S., Varga E., Skrbek L., The decay of forced turbulent coflow of He II past a grid. J. Low Temp. Phys. 175, 324–330 (2014).
Zmeev D. E.et al. ., Dissipation of quasiclassical turbulence in superfluid 4He. Phys. Rev. Lett. 115, 155303 (2015). PubMed
Gao J., Guo W., Vinen W. F., Dissipation in quantum turbulence in superfluid He-4 above 1 K. Phys. Rev. B 97, 184518 (2018).
Gao J., Guo W., Vinen W., Determination of the effective kinematic viscosity for the decay of quasiclassical turbulence in superfluid He-4. Phys. Rev. B 94, 094502 (2016).
Schwarz K. W., Theory of turbulence in superfluid 4He. Phys. Rev. Lett. 38, 551 (1977). PubMed
Schwarz K. W., Three-dimensional vortex dynamics in superfluid 4He. Homogeneous superfluid turbulence. Phys. Rev. B 38, 2398 (1988). PubMed
Tough J. T., “Superfluid turbulence” in Progress in Low Temperature Physics, Brewer D. F., Ed. (North-Holland, 1982), vol. VIII, chap. 3.
Gao J., Varga E., Guo W., Vinen W. F., Energy spectrum of thermal counterflow turbulence in superfluid helium-4. Phys. Rev. B 96, 094511 (2017).
Gao J.et al. ., Decay of counterflow turbulence in superfluid 4He. JETP Lett. 103, 648 (2016).
Hosio J.et al. ., Superfluid vortex front: Decoupling from the reference frame. Phys. Rev. Lett. 107, 135302 (2011). PubMed
Stalp S. R., Niemela J. J., Vinen W. F., Donnelly R. J., Dissipation of grid turbulence in helium II. Phys. Fluid. 14, 1377 (2002).
Chagovets T. V., Gordeev A. V., Skrbek L., Effective kinematic viscosity of turbulent He II. Phys. Rev. E 76, 027301 (2007). PubMed
Babuin S., L’vov V. S., Pomyalov A., Skrbek L., Varga E., Coexistence and interplay of quantum and classical turbulence in superfluid 4He: Decay, velocity decoupling, and counterflow energy spectra. Phys. Rev. B 94, 174504 (2016).
Gordeev A., Chagovets T., Soukup F., Skrbek L., Decay of counterflow turbulence in He II. J. Low Temp. Phys. 138, 549 (2005).
Varga E., Skrbek L., Dynamics of the density of quantized vortex lines in counterflow turbulence: Experimental investigation. Phys. Rev. B 97, 064507 (2018).
Babuin M. S., Stammeier M., Varga E., Rotter M., Skrbek L., Quantum turbulence of bellows-driven 4He superflow: Steady state. Phys. Rev. B 86, 134515 (2012).
Babuin S., Varga E., Vinen W. F., Skrbek L., Quantum turbulence of bellows-driven 4He superflow: Decay. Phys. Rev. B 92, 184503 (2015).
Phenomenology of transition to quantum turbulence in flows of superfluid helium