Phenomenology of transition to quantum turbulence in flows of superfluid helium

. 2024 Mar 19 ; 121 (12) : e2302256121. [epub] 20240308

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38457491

Grantová podpora
GA\v{C}R 20-00918S Czech Science Foundation
GA\v{C}R 20-00918S Czech Science Foundation

Transition from laminar to turbulent states of classical viscous fluids is complex and incompletely understood. Transition to quantum turbulence (QT), by which we mean the turbulent motion of quantum fluids such as helium II, whose physical properties depend on quantum physics in some crucial respects, is naturally more complex. This increased complexity arises from superfluidity, quantization of circulation, and, at finite temperatures below the critical, the two-fluid behavior. Transition to QT could involve, as an initial step, the transition of the classical component, or the intrinsic or extrinsic nucleation of quantized vortices in the superfluid component, or a simultaneous occurrence of both scenarios-and the subsequent interconnected evolution. In spite of the multiplicity of scenarios, aspects of transition to QT can be understood at a phenomenological level on the basis of some general principles, and compared meaningfully with transition in classical flows.

Zobrazit více v PubMed

Kerswell R. R., Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50, 319–345 (2018).

Sengupta T. K., Transition to turbulence (Cambridge University Press, 2021).

Avila M., Barkley D., Hof B., Transition to Turbulence in Pipe Flow. Annu. Rev. Fluid Mech. 55, 575–602 (2023).

Barenghi C. F., Skrbek L., Sreenivasan K. R., Introduction to quantum turbulence. Proc. Natl. Acad. Sci. U.S.A. 111, 4649 (2014). PubMed PMC

Skrbek L., Schmoranzer D., Midlik Š, Sreenivasan K. R., Phenomenology of quantum turbulence in superfluid helium. Proc. Nat. Acad. Sci. USA 118, e2018406118 (2021). PubMed PMC

Barenghi C. F., Skrbek L., Sreenivasan K. R., Quantum turbulence (Cambridge University Press, 2023).

L. Onsager, Discussion remark on The two-fluid model of helium II by C. J. Gorter, Nuovo Cimento 6, suppl. 2, 249 (1949).

L. Onsager, “Introductory talk” in Proceedings of International Conference of Theoritical Physics, Kyoto and Tokyo (1953), p. 877.

Vinen W. F., Detection of single quanta of circulation in liquid helium II. Proc. Roy. Soc. A 260, 218 (1961).

Müller N. P., Krstulovic G., Critical velocity for vortex nucleation and roton emission in a generalized model for superfluids. Phys. Rev. B 105, 014515 (2022).

Awschalom D. D., Schwarz K. W., Properties of superfluid turbulence in a large channel. Phys. Rev. Lett. 52, 49 (1984).

Zurek W. H., Cosmological experiments in superfluid helium? Nature 317, 505 (1985).

Thomson (Lord Kelvin) W., Vibrations of a columnar vortex, Proc. Roy. Soc. Edinburgh 10, 443 (1880).

Sergeev Y. A., Mutual friction in bosonic superfluids: A review. J. Low Temp. Phys. online first, (2023), 10.1007/s10909-023-02972-4. DOI

Barenghi C. F., Donnelly R. J., Vinen W. F., Friction on quantized vortices in helium II. A review. J. Low Temp. Phys. 52, 189 (1883).

Cheng D. K., Cromar M. W., Donnelly R. J., Influence of an axial heat current on negative-ion trapping in rotating helium II. Phys. Rev. Lett. 31, 433 (1973).

Glaberson W. I., Johnson W. W., Ostermeier R. M., Instability of a vortex array in He II. Phys. Rev. Lett. 33, 1197 (1974).

Ostermeier R. M., Glaberson W. I., Instability of vortex lines in the presence of axial normal fluid flow. J. Low Temp. Phys. 21, 191 (1975).

L. Skrbek, W.F. Vinen, The use of vibrating structures in the study of quantum turbulence, Progress in Low Temp. Phys., M. Tsubota, W.P. Halperin, Eds. (Elsevier, Amsterdam, 2009), Vol. XVI, Chap. 4.

Vinen W. F., Skrbek L., Quantum turbulence generated by oscillating structures. Proc. Natl. Acad. Sci. USA 111, 4699 (2014). PubMed PMC

Bradley D. I., et al. , Turbulence generated by vibrating wire resonantors in superfluid 4He at low temperatures. J. Low Temp. Phys. 138, 493 (2005).

Nichol H. A., Skrbek L., Hendry P. C., McClintock P. V. E., Flow of He II due to an oscillating grid in the low-temperature limit. Phys. Rev. Lett. 92, 244501 (2004). PubMed

Bradley D. I., et al. , Transition to turbulence for a quartz tuning fork in superfluid He-4. J. Low Temp. Phys. 156, 116 (2009).

Garg D., et al. , Behavior of quartz forks oscillating in isotopically pure 4He in the T→0 limit. Phys. Rev. B 85, 144518 (2012).

Schmoranzer D., et al. , Multiple critical velocities in oscillatory flow of superfluid 4He due to quartz tuning forks. Phys. Rev. B 94, 214503 (2016).

Vinen W. F., Skrbek L., Nichol H. A., The nucleation of superfluid turbulence at very low temperatures by flow through a grid. J. Low Temp. Phys. 135, 423 (2004).

Sonin E. B., Vortex oscillations and hydrodynamics of rotating superfluids. Rev. Mod. Phys. 59, 87 (1987).

Bevan T. D. C., et al. , Vortex mutual friction in superfluid 3He. J. Low Temp. Phys. 109, 423 (1997).

Finne A. P., et al. , Observation of an intrinsic velocity-independent criterion for superfluid turbulence. Nature 424, 1022 (2003). PubMed

Kopnin N. B., Vortex Instability and the Onset of Superfluid Turbulence. Phys. Rev. Lett. 92, 135301 (2004). PubMed

Vinen W. F., Mutual friction in a heat current in liquid helium II, I. Experiments on steady heat currents. Proc. R. Soc. A 240 114 (1957).

Vinen W. F., Mutual friction in a heat current in liquid helium II. II. Experiments on transient effects. Proc. R. Soc. A 240, 128 (1957).

Vinen W. F., Mutual friction in a heat current in liquid helium II. III. Theory of the mutual friction. Proc. R. Soc. A 242, 493 (1957).

Vinen W. F., Mutual friction in a heat current in liquid helium II. IV. Critical heat currents in wide channels. Proc. R. Soc. A 243, 400 (1958).

Donnelly R. J., Hollis-Hallett A. C., Periodic boundary layer experiments in liquid helium. Ann. Phys. 3, 320 (1958).

Landau L. D., Lifshitz E. M., Hydrodynamics (Pergamon Press, New York, ed. 2, 1987).

Schmoranzer D., et al. , Dynamical similarity and instabilities in high-Stokes-number oscillatory flows of superfluid helium. Phys. Rev. B 99, 054511 (2019).

Blaauwgeers R., et al. , Quartz tuning fork: Thermometer, pressure- and viscometer for helium liquids. J. Low Temp. Phys. 146, 537 (2007).

Hänninen R., Schoepe W., Universal critical velocity for the onset of turbulence of oscillatory superfluid flow. J. Low Temp. Phys. 153, 189 (2008).

Hänninen R., Schoepe W., Universal onset of quantum turbulence in oscillating flows and crossover to steady flows. J. Low Temp. Phys. 158, 410 (2010).

Donnelly R. J., Penrose O., Oscillations of liquid helium in a U-tube. Phys. Rev. 103, 1137 (1955).

Jager J., Schuderer B., Schoepe W., Turbulent and laminar drag of superfluid helium on an oscillating microsphere. Phys. Rev. Lett. 74, 566 (1995). PubMed

Niemetz M., Kercher H., Schoepe W., Intermittent switching between potential flow and turbulence in superfluid helium at mK tempertures. J. Low Temp. Phys. 126, 287 (2002).

Niemetz M., Kercher H., Schoepe W., Stability of Laminar and Turbulent Flow of Superfluid 4He at mK Temperatures Around an Oscillating Microsphere. J. Low Temp. Phys. 135, 447 (2004).

Bradley D. I., et al. , Hysteresis, switching and anomalous behaviour of a quartz tuning fork in superfluid 4He. J. Low Temp. Phys. 175, 379 (2014).

Morishita M., Kuroda T., Sawada A., Satoh T., Mean free path effects in superfluid 4He. J. Low Temp. Phys. 76, 387 (1989).

Charalambous D., et al. , Experimental investigation of the dynamics of a vibrating grid in superfluid 4He over a range of temperatures and pressures. Phys. Rev. E 74, 036307 (2006). PubMed

Bradley D. I., et al. , History dependence of turbulence generated by a vibrating wire in superfluid 4He at 1.5 K. J. Low Temp. Phys. 162, 375 (2011).

Bradley D. I., et al. , The transition to turbulent drag for a cylinder oscillating in superfluid 4He: a comparison of quantum and classical behavior. J. Low Temp. Phys. 154, 97 (2009).

Yano H., et al. , Observation of laminar and turbulent flow in superfluid He-4 using a vibrating wire. J. Low Temp. Phys. 138, 561 (2005).

Yano H., et al. , Study on the turbulent flow of superfluid He-4 generated by a vibrating wire. AIP Conf. Proc. 850, 195 (2006).

Yano H., et al. , Motions of quantized vortices attached to a boundary in alternating currents of superfluid He-4. Phys. Rev. B 75, 012502 (2007).

Hashimoto N., et al. , Control of turbulence in boundary layers of superfluid He-4 by filtering out remanent vortices. Phys. Rev. B 76, 020504 (2007).

Goto R., et al. , Turbulence in boundary flow of superfluid 4 He triggered by free vortex rings. Phys. Rev. Lett. 100, 045301 (2008). PubMed

Nago Y., et al. , Time-of-flight experiments of vortex rings propagating from turbulent region of superfluid He-4 at high temperature. J. Low Temp. Phys. 162, 322 (2011).

Kotsubo V., Swift G. W., Vortex turbulence generated by second sound in superfluid He. Phys. Rev. Lett. 62, 2604 (1989). PubMed

Kotsubo V., Swift G. W., Generation of superfluid vortex turbulence by high-amplitude second sound in 4He. J. Low Temp. Phys. 78, 351 (1990).

Chagovets T. V., Electric response in superfluid helium. Physica B 488, 62 (2016).

Midlik Š., Schmoranzer D., Skrbek L., Transition to quantum turbulence in oscillatory thermal counterflow of 4He. Phys. Rev. B 103, 134516 (2021).

Reynolds O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and the law of resistance in parallel channels. Phil. Trans. Roy. Soc. London 174, 935 (1883).

Allen J. F., Misener A. D., Flow of liquid He II. Nature 424, 1022 (1938).

Baehr M. L., Opatowsky L. B., Tough J. T., Transition from dissipationless superflow to homogeneous superfluid turbulence. Phys. Rev. Lett. 51, 2295 (1983).

Allen J. F., Reekie J., Momentum transfer and heat flow in liquid helium II. Proc. Cambr. Phil. Soc. 35, 114 (1939).

Tough J. T., “Superfluid turbulence” in Progress in Low Temperature Physics (North-Holland Publ. Co., 1982). vol. VIII.

Martin K. P., Tough J. T., Evolution of superfluid turbulence in thermal counterflow. Phys. Rev. B 27, 2788 (1983).

Marakov A., et al. , Visualization of the normal-fluid turbulence in counterflowing superfluid 4He. Phys. Rev. B 91, 094503 (2015).

Yui S., Tsubota M., Counterflow quantum turbulence of He-II in a square channel: Numerical analysis with nonuniform flows of the normal fluid. Phys. Rev. B 91, 184504 (2015).

Baggaley A. W., Laizet S., Vortex line density in counterflowing He II with laminar and turbulent normal fluid velocity profiles. Phys. Fluids 25, 115101 (2013).

Gao J., et al. , Decay of counterflow turbulence in superfluid 4He. JETP Letters 103, 648 (2016).

Babuin S., L’vov V. S., Pomyalov A., Skrbek L., Varga E., Coexistence and interplay of quantum and classical turbulence in superfluid He 4: Decay, velocity decoupling, and counterflow energy spectra. Phys. Rev. B 94, 174504 (2016).

Chase C. K., Thermal conduction in liquid helium II. I. Temperature dependence. Phys. Rev. 127, 361 (1962).

Melotte D. J., Barenghi C. F., Transition to normal fluid turbulence in helium II. Phys. Rev. Lett. 80, 4181 (1998).

Guo W., Cahn S. B., Nikkel J. A., Vinen W. F., McKinsey D. N., Visualization study of counterflow in superfluid 4He using metastable helium molecules. Phys. Rev. Lett. 105, 045301 (2010). PubMed

Schwarz K. W., Three-dimensional vortex dynamics in superfluid He-4. Homogeneous superfluid turbulence. Phys. Rev. B 38, 2398 (1988). PubMed

Souris F., Rojas X., Kim P. H., Davis J. P., Ultra-Low Dissipation Superfluid Micromechanical Resonator. Phys. Rev. Appl. 7, 044008 (2017).

Varga E., Vadakkumbatt V., Shook A. J., Kim P. H., Davis J. P., Observation of bistable turbulence in two-dimensional superflow. Phys. Rev. Lett. 125, 025301 (2020). PubMed

Peretti C., Vessaire J., Durozoy É., Gibert M., Direct visualization of the quantum vortex lattice structure, oscillations, and destabilization in rotating 4He. Sci. Adv. 9, eadh2899 (2023). PubMed PMC

Swanson C. E., Barenghi C. F., Donnelly R. J., Rotation of a tangle of quantized vortex lines in He II. Phys. Rev. Lett. 50, 190–193 (1983).

Mäkinen J. T., et al. , Rotating quantum wave turbulence. Nat. Phys. 19, 898–903 (2023).

Varga E., Peculiarities of spherically symmetric counterflow. J. Low Temp. Phys. 196, 28 (2019).

Xie Z., et al. , Spherical thermal counterflow of He II. J. Low Temp. Phys. 208, 426 (2022).

Novotný F., et al. , Spherical thermal counterflow of superfluid 4He: Vinen type of quantum turbulence, to be published.

Inui S., Tsubota M., Spherically symmetric formation of localized vortex tangle around a heat source in superfluid 4He. Phys. Rev. B 101, 214511 (2020).

Opatowsky L. B., Tough J. T., Homogeneity of turbulence in pure superflow. Phys. Rev. B 9, 5420 (1981).

Ashton H. A., Opatowsky L. B., Tough J. T., Turbulence in pure superfluid flow Phys. Rev. Lett. 46, 658 (1981).

Babuin S., Varga E., Vinen W. F., Skrbek L., Quantum turbulence of bellows-driven 4He superflow: Decay. Phys. Rev. B 92, 184503 (2015).

Babuin S., Stammeier M., Varga E., Rotter M., Skrbek L., Quantum turbulence of bellows- driven 4He superflow: Steady state. Phys. Rev. B 86, 134515 (2012).

Van Alphen W. M., Van Haasteren G. J., De Bruyn Ouboter R., Taconis K. W., The depen-dence of the critical velocity of the superfluid on channel diameter and film thickness. Phys. Lett. 20, 474 (1966).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...