Dynamic Changes of Selected Signaling Molecules in Ovaries Following Early-Life Exposure to Fumonisin B1 in Wistar Rats in Association With DNA Methylation
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
40709489
PubMed Central
PMC12462714
DOI
10.33549/physiolres.935499
PII: 935499
Knihovny.cz E-zdroje
- MeSH
- DNA-(cytosin-5-)methyltransferasa metabolismus MeSH
- DNA-methyltransferasa 3B MeSH
- epigeneze genetická účinky léků MeSH
- fumonisiny * toxicita MeSH
- krysa rodu Rattus MeSH
- metylace DNA * účinky léků fyziologie MeSH
- ovarium * účinky léků metabolismus patologie MeSH
- potkani Wistar MeSH
- signální transdukce účinky léků MeSH
- těhotenství MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- zpožděný efekt prenatální expozice * metabolismus chemicky indukované MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-(cytosin-5-)methyltransferasa MeSH
- DNA-methyltransferasa 3B MeSH
- fumonisin B1 MeSH Prohlížeč
- fumonisiny * MeSH
- TOR serin-threoninkinasy MeSH
RThe mycotoxin fumonisin B1 (FB1) poses a significant global problem due to its presence in the food chain. This study aimed to investigate the intergenerational effects of FB1 on epigenetic changes and the corresponding signaling pathways in rat ovaries. Specifically, we examined the expression levels of DNA methyl-transferase (Dnmt3b) and the Pi3kK/Akt/mTOR/Ampk pathway. Virgin Wistar albino female rats were divided into control and FB1 treatment (doses of 20 and 50 mg/kg body weight/day) groups and monitored from day 6 of pregnancy until delivery. Female rats from the first (F1) and second (F2) generations were euthanized at 4 weeks of age, and their ovaries were collected. In addition to histopathological damage, there was a significant dose-dependent increase in Dnmt3b protein in the ovaries of F1 females (p=0.0022 and p<0.0001, respectively), but not in those of F2 females. Furthermore, overexpression of the PI3K gene was observed only in the high-dose FB1 group in both the F1 and F2 generations. In F2, significant gene overexpression of Akt was observed in the high-dose FB1 group, while no effect was observed in F1. Both treated groups of F1 females showed significant repression of the mTOR gene, whereas no effect was observed in F2 females. In addition, FB1 did not have a significant effect on the expression of the Ampk gene in either treatment group in either generation. We conclude that early-life exposure to FB1 may directly impact the ovarian function of female rats by altering methylation patterns and Pi3k/Akt/mTOR pathway in first- generation females. However, this effect appears to be recoverable in the second-generation females. Key words Mycotoxin " Fumonisin B1 " Epigenetic " Signaling pathway " Methylation " Ovary.
Zobrazit více v PubMed
Harrath AH, Alrezaki A, Alwasel SH, Semlali A. Intergenerational response of steroidogenesis-related genes to maternal malnutrition. J Dev Orig Health Dis. 2019;10:587–594. doi: 10.1017/S2040174419000060. PubMed DOI
Barker DJP. The origins of the developmental origins theory. J Intern Med. 2007;261:412–417. doi: 10.1111/j.1365-2796.2007.01809.x. PubMed DOI
Alwasel S, Harrath A, Aljarallah J, Abotalib Z, Osmond C, Al Omar S, Khaled I, Barker D. Intergenerational effects of in utero exposure to Ramadan in Tunisia. Am J Hum Biol. 2013;25:341–343. doi: 10.1002/ajhb.22374. PubMed DOI
Harrath AH, Alrezaki A, Mansour L, Alwasel SH, Palomba S. Food restriction during pregnancy and female offspring fertility: adverse effects of reprogrammed reproductive lifespan. J Ovarian Res. 2017;10:77. doi: 10.1186/s13048-017-0372-x. PubMed DOI PMC
Arafah M, Aldawood N, Alrezaki A, Nahdi S, Alwasel S, Mansour L, Harrath AH. Prenatal exposure to acrylamide differently affected the sex ratio, aromatase and apoptosis in female adult offspring of two subsequent generations. Physiol Res. 2023;72:59–69. doi: 10.33549/physiolres.934975. PubMed DOI PMC
Susiarjo M, Hassold TJ, Freeman E, Hunt PA. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 2007;3:e5. doi: 10.1371/journal.pgen.0030005. PubMed DOI PMC
Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115:1243–1249. doi: 10.1111/j.1471-0528.2008.01822.x. PubMed DOI
Alhelaisi A, Alrezaki A, Nahdi S, Aldahmash W, Alwasel S, Harrath AH. Early-Life Exposure to the Mycotoxin Fumonisin B1 and Developmental Programming of the Ovary of the Offspring: The Possible Role of Autophagy in Fertility Recovery. Toxics. 2023;11:980. doi: 10.3390/toxics11120980. PubMed DOI PMC
Moelling K. Epigenetics and transgenerational inheritance. J Physiol. 2024;602:2537–2545. doi: 10.1113/JP284424. PubMed DOI
Bautista NM. Transgenerational epigenetic programming. In: VASCHETTO LM, editor. Epigenetics, Development, Ecology and Evolution. Springer; 2022. pp. 123–148. DOI
Knight AK, Spencer JB, Smith AK. DNA methylation as a window into female reproductive aging. Epigenomics. 2024;16:175–188. doi: 10.2217/epi-2023-0298. PubMed DOI PMC
Kolatorova L, Duskova M, Vitku J, Starka L. Prenatal exposure to bisphenols and parabens and impacts on human physiology. Physiol Res. 2017;66(Suppl 3):S305–S315. doi: 10.33549/physiolres.933723. PubMed DOI
Chen H, Malentacchi F, Fambrini M, Harrath AH, Huang H, Petraglia F. Epigenetics of estrogen and progesterone receptors in endometriosis. Reprod Sci. 2020;27:1967–1974. doi: 10.1007/s43032-020-00226-2. PubMed DOI
Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–262. doi: 10.1038/nrg2045. PubMed DOI PMC
Bredfeldt TG, Greathouse KL, Safe SH, Hung M-C, Bedford MT, Walker CL. Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol Endocrinol. 2010;24:993–1006. doi: 10.1210/me.2009-0438. PubMed DOI PMC
Luense LJ, Veiga-Lopez A, Padmanabhan V, Christenson LK. Developmental programming: gestational testosterone treatment alters fetal ovarian gene expression. Endocrinology. 2011;152:4974–4983. doi: 10.1210/en.2011-1182. PubMed DOI PMC
Rosen ED, Kaestner KH, Natarajan R, Patti M-E, Sallari R, Sander M, Susztak K. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes. 2018;67:1923–1931. doi: 10.2337/db18-0537. PubMed DOI PMC
Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One. 2012;7:e36129. doi: 10.1371/journal.pone.0036129. PubMed DOI PMC
Wu H, Ashcraft L, Whitcomb BW, Rahil T, Tougias E, Sites CK, Pilsner JR. Parental contributions to early embryo development: influences of urinary phthalate and phthalate alternatives among couples undergoing IVF treatment. Hum Reprod. 2017;32:65–75. doi: 10.1093/humrep/dew301. PubMed DOI PMC
Wu H, Estill MS, Shershebnev A, Suvorov A, Krawetz SA, Whitcomb BW, Dinnie H, et al. Preconception urinary phthalate concentrations and sperm DNA methylation profiles among men undergoing IVF treatment: a cross-sectional study. Hum Reprod. 2017;32:2159–2169. doi: 10.1093/humrep/dex283. PubMed DOI PMC
Van Cauwenbergh O, Di Serafino A, Tytgat J, Soubry A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clin Epigenetics. 2020;12:1–23. doi: 10.1186/s13148-020-00845-1. PubMed DOI PMC
McKean C, Tang L, Tang M, Billam M, Wang Z, Theodorakis C, Kendall R, Wang J-S. Comparative acute and combinative toxicity of aflatoxin B1 and fumonisin B1 in animals and human cells. Food Chem Toxicol. 2006;44:868–876. doi: 10.1016/j.fct.2005.11.011. PubMed DOI
Szabó A, Szabó-Fodor J, Kachlek M, Mézes M, Balogh K, Glávits R, Ali O, et al. Dose and exposure time-dependent renal and hepatic effects of intraperitoneally administered fumonisin B1 in rats. Toxins (Basel) 2018;10:465. doi: 10.3390/toxins10110465. PubMed DOI PMC
Jalouli M, Mofti A, Elnakady YA, Nahdi S, Feriani A, Alrezaki A, Sebei K, et al. Allethrin promotes apoptosis and autophagy associated with the oxidative stress-related PI3K/AKT/mTOR signaling pathway in developing rat ovaries. Int J Mol Sci. 2022;23:6397. doi: 10.3390/ijms23126397. PubMed DOI PMC
Yu B, Russanova VR, Gravina S, Hartley S, Mullikin JC, Ignezweski A, Graham J, et al. DNA methylome and transcriptome sequencing in human ovarian granulosa cells links age-related changes in gene expression to gene body methylation and 3′-end GC density. Oncotarget. 2015;6:3627. doi: 10.18632/oncotarget.2875. PubMed DOI PMC
Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27:351–357. doi: 10.1055/s-0029-1237423. PubMed DOI PMC
Zama AM, Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology. 2009;150:4681–4691. doi: 10.1210/en.2009-0499. PubMed DOI PMC
Fuortes L, Clark M, Kirchner H, Smith E. Association between female infertility and agricultural work history. Am J Ind Med. 1997;31:445–451. doi: 10.1002/(SICI)1097-0274(199704)31:4<445::AID-AJIM11>3.0.CO;2-#. PubMed DOI
Jefferson WN, Couse JF, Padilla-Banks E, Korach KS, Newbold RR. Neonatal exposure to genistein induces estrogen receptor (ER) α expression and multioocyte follicles in the maturing mouse ovary: evidence for ERβ-mediated and nonestrogenic actions. Biol Reprod. 2002;67:1285–1296. doi: 10.1095/biolreprod67.4.1285. PubMed DOI
Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466–1469. doi: 10.1126/science.1108190. PubMed DOI PMC
Wu S, Zhu J, Li Y, Lin T, Gan L, Yuan X, Xiong J, et al. Dynamic epigenetic changes involved in testicular toxicity induced by di-2-(ethylhexyl) phthalate in mice. Basic Clin Pharmacol Toxicol. 2010;106:118–123. doi: 10.1111/j.1742-7843.2009.00483.x. PubMed DOI
Rattan S, Flaws JA. The epigenetic impacts of endocrine disruptors on female reproduction across generations. Biol Reprod. 2019;101:635–644. doi: 10.1093/biolre/ioz081. PubMed DOI PMC
Plunk EC, Richards SM. Epigenetic modifications due to environment, ageing, nutrition, and endocrine disrupting chemicals and their effects on the endocrine system. Int J Endocrinol. 2020;2020:9251980. doi: 10.1155/2020/9251980. PubMed DOI PMC
Nilsson E, Klukovich R, Sadler-Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufficiency. Epigenetics. 2018;13:875–895. doi: 10.1080/15592294.2018.1521223. PubMed DOI PMC
Loren P, Saavedra N, Saavedra K, Zambrano T, Moriel P, Salazar LA. Epigenetic mechanisms involved in cisplatin-induced nephrotoxicity: an update. Pharmaceuticals. 2021;14:491. doi: 10.3390/ph14060491. PubMed DOI PMC
Terren C, Nisolle M, Munaut C. Pharmacological inhibition of the PI3K/PTEN/Akt and mTOR signalling pathways limits follicle activation induced by ovarian cryopreservation and in vitro culture. J Ovarian Res. 2021;14:1–15. doi: 10.1186/s13048-021-00846-5. PubMed DOI PMC
Qin J, Fu M, Wang J, Huang F, Liu H, Huangfu M, Yu D, et al. PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin-3-gallate in ovarian cancer. Oncol Rep. 2020;43:1885–1896. doi: 10.3892/or.2020.7571. PubMed DOI PMC
De Felici M, Klinger FG. PI3K/PTEN/AKT signaling pathways in germ cell development and their involvement in germ cell tumors and ovarian dysfunctions. Int J Mol Sci. 2021;22:9838. doi: 10.3390/ijms22189838. PubMed DOI PMC
Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319:611–613. doi: 10.1126/science.1152257. PubMed DOI
Cecconi S, Mauro A, Cellini V, Patacchiola F. The role of Akt signalling in the mammalian ovary. Int J Dev Biol. 2013;56:809–817. doi: 10.1387/ijdb.120146sc. PubMed DOI
Reddy P, Adhikari D, Zheng W, Liang S, Hämäläinen T, Tohonen V, Ogawa W, et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet. 2009;18:2813–2824. doi: 10.1093/hmg/ddp217. PubMed DOI
Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal. 2011;23:1515–1527. doi: 10.1016/j.cellsig.2011.05.004. PubMed DOI
Yaba A, Bianchi V, Borini A, Johnson J. A putative mitotic checkpoint dependent on mTOR function controls cell proliferation and survival in ovarian granulosa cells. Reprod Sci. 2008;15:128–138. doi: 10.1177/1933719107312037. PubMed DOI
Guo Z, Yu Q. Role of mTOR signaling in female reproduction. Front Endocrinol (Lausanne) 2019;10:692. doi: 10.3389/fendo.2019.00692. PubMed DOI PMC
Sun Y, Deng M, Ke X, Lei X, Ju H, Liu Z, Bai X. Epidermal growth factor protects against high glucose-induced podocyte injury possibly via modulation of autophagy and PI3K/AKT/mTOR signaling pathway through DNA methylation. Diabetes Metab Syndr Obes. 2021;14:2255–2268. doi: 10.2147/DMSO.S299562. PubMed DOI PMC
Hardie DG, Scott JW, Pan DA, Hudson ER. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003;546:113–120. doi: 10.1016/S0014-5793(03)00560-X. PubMed DOI
Kayampilly P, Menon K. Follicle stimulating hormone inhibits AMPK activation and promotes cell proliferation of primary granulosa cells in culture through an Akt dependent pathway. Endocrinology. 2009;150:929–935. doi: 10.1210/en.2008-1032. PubMed DOI PMC