Dynamic Changes of Selected Signaling Molecules in Ovaries Following Early-Life Exposure to Fumonisin B1 in Wistar Rats in Association With DNA Methylation

. 2025 Jul 25 ; 74 (3) : 493-502.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40709489

RThe mycotoxin fumonisin B1 (FB1) poses a significant global problem due to its presence in the food chain. This study aimed to investigate the intergenerational effects of FB1 on epigenetic changes and the corresponding signaling pathways in rat ovaries. Specifically, we examined the expression levels of DNA methyl-transferase (Dnmt3b) and the Pi3kK/Akt/mTOR/Ampk pathway. Virgin Wistar albino female rats were divided into control and FB1 treatment (doses of 20 and 50 mg/kg body weight/day) groups and monitored from day 6 of pregnancy until delivery. Female rats from the first (F1) and second (F2) generations were euthanized at 4 weeks of age, and their ovaries were collected. In addition to histopathological damage, there was a significant dose-dependent increase in Dnmt3b protein in the ovaries of F1 females (p=0.0022 and p<0.0001, respectively), but not in those of F2 females. Furthermore, overexpression of the PI3K gene was observed only in the high-dose FB1 group in both the F1 and F2 generations. In F2, significant gene overexpression of Akt was observed in the high-dose FB1 group, while no effect was observed in F1. Both treated groups of F1 females showed significant repression of the mTOR gene, whereas no effect was observed in F2 females. In addition, FB1 did not have a significant effect on the expression of the Ampk gene in either treatment group in either generation. We conclude that early-life exposure to FB1 may directly impact the ovarian function of female rats by altering methylation patterns and Pi3k/Akt/mTOR pathway in first- generation females. However, this effect appears to be recoverable in the second-generation females. Key words Mycotoxin " Fumonisin B1 " Epigenetic " Signaling pathway " Methylation " Ovary.

Zobrazit více v PubMed

Harrath AH, Alrezaki A, Alwasel SH, Semlali A. Intergenerational response of steroidogenesis-related genes to maternal malnutrition. J Dev Orig Health Dis. 2019;10:587–594. doi: 10.1017/S2040174419000060. PubMed DOI

Barker DJP. The origins of the developmental origins theory. J Intern Med. 2007;261:412–417. doi: 10.1111/j.1365-2796.2007.01809.x. PubMed DOI

Alwasel S, Harrath A, Aljarallah J, Abotalib Z, Osmond C, Al Omar S, Khaled I, Barker D. Intergenerational effects of in utero exposure to Ramadan in Tunisia. Am J Hum Biol. 2013;25:341–343. doi: 10.1002/ajhb.22374. PubMed DOI

Harrath AH, Alrezaki A, Mansour L, Alwasel SH, Palomba S. Food restriction during pregnancy and female offspring fertility: adverse effects of reprogrammed reproductive lifespan. J Ovarian Res. 2017;10:77. doi: 10.1186/s13048-017-0372-x. PubMed DOI PMC

Arafah M, Aldawood N, Alrezaki A, Nahdi S, Alwasel S, Mansour L, Harrath AH. Prenatal exposure to acrylamide differently affected the sex ratio, aromatase and apoptosis in female adult offspring of two subsequent generations. Physiol Res. 2023;72:59–69. doi: 10.33549/physiolres.934975. PubMed DOI PMC

Susiarjo M, Hassold TJ, Freeman E, Hunt PA. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 2007;3:e5. doi: 10.1371/journal.pgen.0030005. PubMed DOI PMC

Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115:1243–1249. doi: 10.1111/j.1471-0528.2008.01822.x. PubMed DOI

Alhelaisi A, Alrezaki A, Nahdi S, Aldahmash W, Alwasel S, Harrath AH. Early-Life Exposure to the Mycotoxin Fumonisin B1 and Developmental Programming of the Ovary of the Offspring: The Possible Role of Autophagy in Fertility Recovery. Toxics. 2023;11:980. doi: 10.3390/toxics11120980. PubMed DOI PMC

Moelling K. Epigenetics and transgenerational inheritance. J Physiol. 2024;602:2537–2545. doi: 10.1113/JP284424. PubMed DOI

Bautista NM. Transgenerational epigenetic programming. In: VASCHETTO LM, editor. Epigenetics, Development, Ecology and Evolution. Springer; 2022. pp. 123–148. DOI

Knight AK, Spencer JB, Smith AK. DNA methylation as a window into female reproductive aging. Epigenomics. 2024;16:175–188. doi: 10.2217/epi-2023-0298. PubMed DOI PMC

Kolatorova L, Duskova M, Vitku J, Starka L. Prenatal exposure to bisphenols and parabens and impacts on human physiology. Physiol Res. 2017;66(Suppl 3):S305–S315. doi: 10.33549/physiolres.933723. PubMed DOI

Chen H, Malentacchi F, Fambrini M, Harrath AH, Huang H, Petraglia F. Epigenetics of estrogen and progesterone receptors in endometriosis. Reprod Sci. 2020;27:1967–1974. doi: 10.1007/s43032-020-00226-2. PubMed DOI

Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–262. doi: 10.1038/nrg2045. PubMed DOI PMC

Bredfeldt TG, Greathouse KL, Safe SH, Hung M-C, Bedford MT, Walker CL. Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol Endocrinol. 2010;24:993–1006. doi: 10.1210/me.2009-0438. PubMed DOI PMC

Luense LJ, Veiga-Lopez A, Padmanabhan V, Christenson LK. Developmental programming: gestational testosterone treatment alters fetal ovarian gene expression. Endocrinology. 2011;152:4974–4983. doi: 10.1210/en.2011-1182. PubMed DOI PMC

Rosen ED, Kaestner KH, Natarajan R, Patti M-E, Sallari R, Sander M, Susztak K. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes. 2018;67:1923–1931. doi: 10.2337/db18-0537. PubMed DOI PMC

Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One. 2012;7:e36129. doi: 10.1371/journal.pone.0036129. PubMed DOI PMC

Wu H, Ashcraft L, Whitcomb BW, Rahil T, Tougias E, Sites CK, Pilsner JR. Parental contributions to early embryo development: influences of urinary phthalate and phthalate alternatives among couples undergoing IVF treatment. Hum Reprod. 2017;32:65–75. doi: 10.1093/humrep/dew301. PubMed DOI PMC

Wu H, Estill MS, Shershebnev A, Suvorov A, Krawetz SA, Whitcomb BW, Dinnie H, et al. Preconception urinary phthalate concentrations and sperm DNA methylation profiles among men undergoing IVF treatment: a cross-sectional study. Hum Reprod. 2017;32:2159–2169. doi: 10.1093/humrep/dex283. PubMed DOI PMC

Van Cauwenbergh O, Di Serafino A, Tytgat J, Soubry A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clin Epigenetics. 2020;12:1–23. doi: 10.1186/s13148-020-00845-1. PubMed DOI PMC

McKean C, Tang L, Tang M, Billam M, Wang Z, Theodorakis C, Kendall R, Wang J-S. Comparative acute and combinative toxicity of aflatoxin B1 and fumonisin B1 in animals and human cells. Food Chem Toxicol. 2006;44:868–876. doi: 10.1016/j.fct.2005.11.011. PubMed DOI

Szabó A, Szabó-Fodor J, Kachlek M, Mézes M, Balogh K, Glávits R, Ali O, et al. Dose and exposure time-dependent renal and hepatic effects of intraperitoneally administered fumonisin B1 in rats. Toxins (Basel) 2018;10:465. doi: 10.3390/toxins10110465. PubMed DOI PMC

Jalouli M, Mofti A, Elnakady YA, Nahdi S, Feriani A, Alrezaki A, Sebei K, et al. Allethrin promotes apoptosis and autophagy associated with the oxidative stress-related PI3K/AKT/mTOR signaling pathway in developing rat ovaries. Int J Mol Sci. 2022;23:6397. doi: 10.3390/ijms23126397. PubMed DOI PMC

Yu B, Russanova VR, Gravina S, Hartley S, Mullikin JC, Ignezweski A, Graham J, et al. DNA methylome and transcriptome sequencing in human ovarian granulosa cells links age-related changes in gene expression to gene body methylation and 3′-end GC density. Oncotarget. 2015;6:3627. doi: 10.18632/oncotarget.2875. PubMed DOI PMC

Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27:351–357. doi: 10.1055/s-0029-1237423. PubMed DOI PMC

Zama AM, Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology. 2009;150:4681–4691. doi: 10.1210/en.2009-0499. PubMed DOI PMC

Fuortes L, Clark M, Kirchner H, Smith E. Association between female infertility and agricultural work history. Am J Ind Med. 1997;31:445–451. doi: 10.1002/(SICI)1097-0274(199704)31:4<445::AID-AJIM11>3.0.CO;2-#. PubMed DOI

Jefferson WN, Couse JF, Padilla-Banks E, Korach KS, Newbold RR. Neonatal exposure to genistein induces estrogen receptor (ER) α expression and multioocyte follicles in the maturing mouse ovary: evidence for ERβ-mediated and nonestrogenic actions. Biol Reprod. 2002;67:1285–1296. doi: 10.1095/biolreprod67.4.1285. PubMed DOI

Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466–1469. doi: 10.1126/science.1108190. PubMed DOI PMC

Wu S, Zhu J, Li Y, Lin T, Gan L, Yuan X, Xiong J, et al. Dynamic epigenetic changes involved in testicular toxicity induced by di-2-(ethylhexyl) phthalate in mice. Basic Clin Pharmacol Toxicol. 2010;106:118–123. doi: 10.1111/j.1742-7843.2009.00483.x. PubMed DOI

Rattan S, Flaws JA. The epigenetic impacts of endocrine disruptors on female reproduction across generations. Biol Reprod. 2019;101:635–644. doi: 10.1093/biolre/ioz081. PubMed DOI PMC

Plunk EC, Richards SM. Epigenetic modifications due to environment, ageing, nutrition, and endocrine disrupting chemicals and their effects on the endocrine system. Int J Endocrinol. 2020;2020:9251980. doi: 10.1155/2020/9251980. PubMed DOI PMC

Nilsson E, Klukovich R, Sadler-Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufficiency. Epigenetics. 2018;13:875–895. doi: 10.1080/15592294.2018.1521223. PubMed DOI PMC

Loren P, Saavedra N, Saavedra K, Zambrano T, Moriel P, Salazar LA. Epigenetic mechanisms involved in cisplatin-induced nephrotoxicity: an update. Pharmaceuticals. 2021;14:491. doi: 10.3390/ph14060491. PubMed DOI PMC

Terren C, Nisolle M, Munaut C. Pharmacological inhibition of the PI3K/PTEN/Akt and mTOR signalling pathways limits follicle activation induced by ovarian cryopreservation and in vitro culture. J Ovarian Res. 2021;14:1–15. doi: 10.1186/s13048-021-00846-5. PubMed DOI PMC

Qin J, Fu M, Wang J, Huang F, Liu H, Huangfu M, Yu D, et al. PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin-3-gallate in ovarian cancer. Oncol Rep. 2020;43:1885–1896. doi: 10.3892/or.2020.7571. PubMed DOI PMC

De Felici M, Klinger FG. PI3K/PTEN/AKT signaling pathways in germ cell development and their involvement in germ cell tumors and ovarian dysfunctions. Int J Mol Sci. 2021;22:9838. doi: 10.3390/ijms22189838. PubMed DOI PMC

Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319:611–613. doi: 10.1126/science.1152257. PubMed DOI

Cecconi S, Mauro A, Cellini V, Patacchiola F. The role of Akt signalling in the mammalian ovary. Int J Dev Biol. 2013;56:809–817. doi: 10.1387/ijdb.120146sc. PubMed DOI

Reddy P, Adhikari D, Zheng W, Liang S, Hämäläinen T, Tohonen V, Ogawa W, et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet. 2009;18:2813–2824. doi: 10.1093/hmg/ddp217. PubMed DOI

Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal. 2011;23:1515–1527. doi: 10.1016/j.cellsig.2011.05.004. PubMed DOI

Yaba A, Bianchi V, Borini A, Johnson J. A putative mitotic checkpoint dependent on mTOR function controls cell proliferation and survival in ovarian granulosa cells. Reprod Sci. 2008;15:128–138. doi: 10.1177/1933719107312037. PubMed DOI

Guo Z, Yu Q. Role of mTOR signaling in female reproduction. Front Endocrinol (Lausanne) 2019;10:692. doi: 10.3389/fendo.2019.00692. PubMed DOI PMC

Sun Y, Deng M, Ke X, Lei X, Ju H, Liu Z, Bai X. Epidermal growth factor protects against high glucose-induced podocyte injury possibly via modulation of autophagy and PI3K/AKT/mTOR signaling pathway through DNA methylation. Diabetes Metab Syndr Obes. 2021;14:2255–2268. doi: 10.2147/DMSO.S299562. PubMed DOI PMC

Hardie DG, Scott JW, Pan DA, Hudson ER. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003;546:113–120. doi: 10.1016/S0014-5793(03)00560-X. PubMed DOI

Kayampilly P, Menon K. Follicle stimulating hormone inhibits AMPK activation and promotes cell proliferation of primary granulosa cells in culture through an Akt dependent pathway. Endocrinology. 2009;150:929–935. doi: 10.1210/en.2008-1032. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...