Femtosecond Laser Plane-by-Plane Inscribed Cavity Mirrors for Monolithic Fiber Lasers in Thulium-Doped Fiber
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
POST-DOC/0718/(sp.ext.)/0003
Research and Innovation Foundation
PubMed
33801791
PubMed Central
PMC8000636
DOI
10.3390/s21061928
PII: s21061928
Knihovny.cz E-zdroje
- Klíčová slova
- femtosecond laser, fiber Bragg gratings, fiber lasers, monolithic fiber lasers,
- Publikační typ
- časopisecké články MeSH
A monolithic fiber laser operating in the short wavelength infrared that is suitable for CO2 gas sensing applications is proposed and presented. The current study reports a laser design based on the direct inscription of a monolithic Fabry-Perot (FP) cavity in a thulium-doped optical fiber using the femtosecond laser (FsL) plane-by-plane inscription method to produce the cavity mirrors. The FP cavity was inscribed directly into the active fiber using two wavelength-identical fiber Bragg gratings (FBGs), one with high and one with low reflectivity. Initially the effective length of the fiber was defined using a single high reflectivity FBG and subsequently a very weak FBG was inscribed at the other end of the fiber in order to demonstrate a fully monolithic fiber laser. All fiber lasers were designed for continuous wave operation at 1950 nm and characterized with respect to the power output, slope efficiency, stability, and effective resonator length. The performance of the presented monolithic laser cavities was evaluated using the same active fiber as a reference fiber spliced to FBGs inscribed in passive fiber; an improvement exceeding 12% slope efficiency is reported for the presented monolithic laser.
Zobrazit více v PubMed
Waynant R.W., Ilev I.K., Gannot I., Meyer J.R., Sirtori C. Mid-infrared laser applications in medicine and biology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2001;359:635–644. doi: 10.1098/rsta.2000.0747. DOI
Seddon A.B. Mid-infrared (IR)—A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys. Status Solidi. 2013;250:1020–1027. doi: 10.1002/pssb.201248524. DOI
Thomson M.A. Mid-IR Spectroscopy as a Tool for Cleanliness Validation. Volume 7 Elsevier Inc.; Amsterdam, The Netherlands: 2014.
Zervas M.N., Codemard C.A. High Power Fiber Lasers: A Review. IEEE J. Sel. Top. Quantum Electron. 2014;20:219–241. doi: 10.1109/JSTQE.2014.2321279. DOI
Dragic P.D., Cavillon M., Ballato J. Materials for optical fiber lasers: A review. Appl. Phys. Rev. 2018;5 doi: 10.1063/1.5048410. DOI
Theodosiou A., Aubrecht J., Peterka P., Kašík I., Todorov F., Moravec O., Honzátko P., Kalli K. Monolithic Er/Yb double-clad fibre laser with FBG inscribed using the direct-write plane-by-plane fs-laser inscription method. Proc. SPIE. 2018;10683 doi: 10.1117/12.2306522. DOI
Theodosiou A., Aubrecht J., Peterka P., Kasik I., Todorov F., Moravec O., Honzatko P., Kalli K. Er/Yb Double-Clad Fiber Laser With fs-Laser Inscribed Plane-by-Plane Chirped FBG Laser Mirrors. IEEE Photonics Technol. Lett. 2019;31:409–412. doi: 10.1109/LPT.2019.2896896. DOI
Aubrecht J., Peterka P., Honzátko P., Podrazký O., Kamrádek M., Proboštová J., Kašík I., Todotov F. Monolithic thulium-doped fiber laser. Photonics Devices Syst. VII. 2017;10603 doi: 10.1117/12.2292912. DOI
Voigtländer C., Thomas J., Wikszak E., Dannberg P., Nolte S., Tünnermann A. Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask. Opt. Lett. 2009;34:3285–3290. doi: 10.1364/OL.34.001888. PubMed DOI
Hill K.O., Malo B., Bilodeau F., Johnson D.C., Albert J. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 1993;62:1035–1037. doi: 10.1063/1.108786. DOI
Pospori A., Marques C.A.F., Sagias G., Lamela-Rivera H., Webb D.J. Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths. Opt. Express. 2018;26:1411. doi: 10.1364/OE.26.001411. PubMed DOI
Marshall G.D., Williams R.J., Jovanovic N., Steel M.J., Withford M.J. Point-by-point written fiber-Bragg gratings and their application in complex grating designs. Opt. Express. 2010;18:19844. doi: 10.1364/OE.18.019844. PubMed DOI
Geernaert T., Kalli K., Koutsides C., Komodromos M., Nasilowski T., Urbanczyk W., Wojcik J., Berghmans F., Thienpont H. Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser. Opt. Lett. 2010;35:1647. doi: 10.1364/OL.35.001647. PubMed DOI
Martinez A., Khrushchev I.Y., Bennion I. Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser. Electron. Lett. 2005;41:176–178. doi: 10.1049/el:20057898. DOI
Jovanovic N., Fuerbach A., Marshall G.D., Withford M.J., Jackson S.D. Stable high-power continuous-wave Yb^3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating. Opt. Lett. 2007;32:1486. doi: 10.1364/OL.32.001486. PubMed DOI
Jovanovic N., Thomas J., Williams R.J., Steel M.J., Marshall G.D., Fuerbach A., Nolte S., Tünnermann A., Withford M.J. Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers. Opt. Express. 2009;17:6082. doi: 10.1364/OE.17.006082. PubMed DOI
Hudson D.D., Williams R.J., Withford M.J., Jackson S.D. Advanced Solid-State Lasers Congress. Optical Society of America; Washington, DC, USA: 2013. Single frequency fiber laser operating at 2.9 µm; p. MTh1C.8. OSA Technical Digest (online) PubMed DOI
Krämer R.G., Matzdorf C., Liem A., Bock V., Middents W., Goebel T.A., Heck M., Richter D., Schreiber T., Tünnermann A., et al. Femtosecond written fiber Bragg gratings in ytterbium-doped fibers for fiber lasers in the kilowatt regime. Opt. Lett. 2019;44:723. doi: 10.1364/OL.44.000723. PubMed DOI
Wikszak E., Thomas J., Burghoff J., Ortaç B., Limpert J., Nolte S., Fuchs U., Tünnermann A. Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating. Opt. Lett. 2006;31:2390. doi: 10.1364/OL.31.002390. PubMed DOI
Wikszak E., Thomas J., Klingebiel S., Ortaç B., Limpert J., Nolte S., Tünnermann A. Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings. Opt. Lett. 2007;32:2756. doi: 10.1364/OL.32.002756. PubMed DOI
Peterka P., Kasik I., Dhar A., Dussardier B., Blanc W. Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced ^3H_4 level lifetime. Opt. Express. 2011;19:2773. doi: 10.1364/OE.19.002773. PubMed DOI
Honzatko P., Baravets Y., Todorov F., Peterka P., Becker M. Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers. Laser Phys. Lett. 2013;10:095104. doi: 10.1088/1612-2011/10/9/095104. DOI
Todorov F., Aubrecht J., Peterka P., Schreiber O., Jasim A.A., Mrázek J., Podrazký O., Kamrádek M., Kanagaraj N., Grábner M., et al. Active Optical Fibers and Components for Fiber Lasers Emitting in the 2-μm Spectral Range. Materials. 2020;13:5177. doi: 10.3390/ma13225177. PubMed DOI PMC
Basov S., Milstein A., Sulimani E., Platkov M., Peretz E., Rattunde M., Wagner J., Netz U., Katzir A., Nisky I. Robot-assisted laser tissue soldering system. Biomed. Opt. Express. 2018;9:5635. doi: 10.1364/BOE.9.005635. PubMed DOI PMC
Fried N.M. Recent advances in infrared laser lithotripsy [Invited] Biomed. Opt. Express. 2018;9:4552. doi: 10.1364/BOE.9.004552. PubMed DOI PMC
Böhm S., Schmidt M., Stichel T., Kahlmeyer M., Kryukov I., Sommer N. Single-step Laser Plastic Deposition (LPD) using a near-infrared Thulium fiber-laser. Polym. Test. 2020;81:106185. doi: 10.1016/j.polymertesting.2019.106185. DOI
Brosda M., Nguyen P., Olowinsky A., Gillner A. Laserwelding of biopolymers. Procedia Cirp. 2018;74:548–552. doi: 10.1016/j.procir.2018.08.116. DOI
Mingareev I., Weirauch F., Olowinsky A., Shah L., Kadwani P., Richardson M. Welding of polymers using a 2μm thulium fiber laser. Opt. Laser Technol. 2012;44:2095–2099. doi: 10.1016/j.optlastec.2012.03.020. DOI
Pal A., Chen S.Y., Sen R., Sun T., Grattan K.T.V. A high-Q low threshold thulium-doped silica microsphere laser in the 2 μm wavelength region designed for gas sensing applications. Laser Phys. Lett. 2013;10:085101. doi: 10.1088/1612-2011/10/8/085101. DOI
Yao S., Chen S.Y., Pal A., Bremer K., Guan B.O., Sun T., Grattan K.T.V. Compact Tm-doped fibre laser pumped by a 1600 nm Er-doped fibre laser designed for environmental gas sensing. Sens. Actuators A Phys. 2015;226:11–20. doi: 10.1016/j.sna.2015.02.019. DOI
Parriaux A., Hammani K., Millot G. Electro-optic dual-comb spectrometer in the thulium amplification band for gas sensing applications. Opt. Lett. 2019;44:4335. doi: 10.1364/OL.44.004335. PubMed DOI
Jackson S.D. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers. Opt. Commun. 2004;230:197–203. doi: 10.1016/j.optcom.2003.11.045. DOI
Wu J., Yao Z., Zong J., Jiang S. Highly efficient high-power thulium-doped germanate glass fiber laser. Opt. Lett. 2007;32:638. doi: 10.1364/OL.32.000638. PubMed DOI
Clarkson W.A., Pearson L., Zhang Z., Kim J.W., Shen D., Boyland A.J., Sahu J.K., Ibsen M. High Power Thulium Doped Fiber Lasers; Proceedings of the Optical Fiber Communication Conference and National Fiber Optic Engineers Conference; San Diego, CA, USA. 22–26 March 2009; p. OWT1. DOI
Tang Y., Huang C., Wang S., Li H., Xu J. High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity. Opt. Express. 2012;20:17539. doi: 10.1364/OE.20.017539. PubMed DOI
Peterka P., Honzatko P., Becker M., Todorov F., Pisarik M., Podrazky O., Kasik I. Monolithic Tm-Doped Fiber Laser at 1951 nm With Deep-UV Femtosecond-Induced FBG Pair. IEEE Photonics Technol. Lett. 2013;25:1623–1625. doi: 10.1109/LPT.2013.2272880. DOI
Theodosiou A., Lacraz A., Polis M., Kalli K., Tsangari M., Stassis A., Komodromos M. Modified fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams. IEEE Photonics Technol. Lett. 2016;28:1509–1512. doi: 10.1109/LPT.2016.2555852. DOI
Theodosiou A., Lacraz A., Stassis A., Koutsides C., Komodromos M., Kalli K. Plane-by-Plane Femtosecond Laser Inscription Method for Single-Peak Bragg Gratings in Multimode CYTOP Polymer Optical Fiber. J. Light. Technol. 2017;35:5404–5410. doi: 10.1109/JLT.2017.2776862. DOI
Fokine M., Theodosiou A., Song S., Hawkins T., Ballato J., Kalli K., Gibson U.J. Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers. Opt. Mater. Express. 2017;7:1589. doi: 10.1364/OME.7.001589. DOI
Theodosiou A., Ioannou A., Kalli K. All-in-Fiber Cladding Interferometric and Bragg Grating Components Made via Plane-by-Plane Femtosecond Laser Inscription. J. Light. Technol. 2019;37:4864–8471. doi: 10.1109/JLT.2019.2925263. DOI
Cajzl J., Peterka P., Honzátko P., Podrazký O., Kamrádek M., Aubrecht J., Proboštová J., Kašík I. Evaluation of energy transfer coefficients in Tm-doped fibers for fiber lasers. Photonics Devices Syst. VII. 2017;10603 doi: 10.1117/12.2296342. DOI
Kamradek M., Honzatko P., Kasik I., Aubrecht J., Mrazek J., Podrazky O., Cajzl J., Varak P., Kubecek V., Peterka P. Nanoparticle and Solution Doping for Efficient Holmium Fiber Lasers. IEEE Photonics J. 2019;11:1–10. doi: 10.1109/JPHOT.2019.2940747. DOI
Kasik I., Peterka P., Mrazek J., Honzatko P. Silica Optical Fibers Doped with Nanoparticles for Fiber Lasers and Broadband Sources. Curr. Nanosci. 2016;12:277–290. doi: 10.2174/1573413711666150624170638. DOI
Aubrecht J., Peterka P., Honzátko P., Moravec O., Kamrádek M., Kašík I. Broadband thulium-doped fiber ASE source. Opt. Lett. 2020;45:2164. doi: 10.1364/OL.389397. PubMed DOI
Erdogan T. Fiber grating spectra. J. Light. Technol. 1997;15:1277–1294. doi: 10.1109/50.618322. DOI
Peterka P., Navrátil P., Maria J., Dussardier B., Slavík R., Honzátko P., Kubeček V. Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers. Laser Phys. Lett. 2012;9:445–450. doi: 10.7452/lapl.201210013. DOI
Peterka P., Koska P., Ctyroky J. Reflectivity of Superimposed Bragg Gratings Induced by Longitudinal Mode Instabilities in Fiber Lasers. IEEE J. Sel. Top. Quantum Electron. 2018;24:1–8. doi: 10.1109/JSTQE.2018.2806084. DOI