Active Optical Fibers and Components for Fiber Lasers Emitting in the 2-μm Spectral Range
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN01000008
Technology Agency of the Czech Republic
GA19-03141S
Czech Science Foundation
PubMed
33212802
PubMed Central
PMC7696405
DOI
10.3390/ma13225177
PII: ma13225177
Knihovny.cz E-zdroje
- Klíčová slova
- Bragg gratings, fiber laser material processing, fiber lasers, fused fiber components, mode-locked fiber lasers, nanoparticle doping, preform shaping, rare-earth (RE) doped optical fibers, self-swept fiber lasers,
- Publikační typ
- časopisecké články MeSH
Laser sources emitting in the infrared range at around 2 µm are attracting great interest for a variety of applications like processing of transparent thermoplastic polymers in industry as well as plenty of applications in medicine, spectroscopy, gas sensing, nonlinear frequency conversion to the mid-infrared, to mention a few. Of late, fiber lasers compared to other kinds of lasers benefit from their all-fiber design, leading to a compact, robust, and well thermally manageable device. Particularly, thulium- and holmium-doped fiber lasers are the first choice in fiber lasers emitting light around 2 µm. In this paper, we give an overview of our recent results in the research on thulium- and holmium-doped optical fibers, fiber lasers, and related research topics in the 2-µm spectral range. In particular, we present, to our knowledge, the first results of improvement of pump absorption in double-clad fibers thanks to the fiber twist frozen during drawing. Finally, a brief demonstration of material processing by thulium all-fiber laser operating at 2 µm is presented.
Zobrazit více v PubMed
Hudson D.D. Invited paper: Short pulse generation in mid-IR fiber lasers. Opt. Fiber Technol. 2014;20:631–641. doi: 10.1016/j.yofte.2014.08.003. DOI
Paschotta R. RP Photonics Encyclopedia: Eye Safe Lasers. [(accessed on 11 August 2020)]; Available online: https://www.rp-photonics.com/eye_safe_lasers.html.
McComb T.S., Sims R.A., Willis C.C.C., Kadwani P., Sudesh V., Shah L., Richardson M. High-power widely tunable thulium fiber lasers. Appl. Opt. 2010;49:6236–6242. doi: 10.1364/AO.49.006236. PubMed DOI
De Young R.J., Barnes N.P. Profiling atmospheric water vapor using a fiber laser lidar system. Appl. Opt. 2010;49:562–567. doi: 10.1364/AO.49.000562. PubMed DOI
Sincore A., Bradford J.D., Cook J., Shah L., Richardson M.C. High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts. IEEE J. Sel. Top. Quantum Electron. 2018;24:1–8. doi: 10.1109/JSTQE.2017.2775964. DOI
Scholle K., Schäfer M., Lamrini S., Wysmolek M., Steinke M., Neumann J., Fuhrberg P. All-fiber linearly polarized high power 2-μm single mode Tm-fiber laser for plastic processing and Ho-laser pumping applications; Proceedings of the Fiber Lasers XV: Technology and Systems; San Francisco, CA, USA. 26 February 2018; p. 105120. DOI
Mingareev I., Weirauch F., Olowinsky A., Shah L., Kadwani P., Richardson M. Welding of polymers using a 2um thulium fiber laser. Opt. Laser Technol. 2012;44:2095–2099. doi: 10.1016/j.optlastec.2012.03.020. DOI
Roth G., Rung S., Hellmann R. Welding of transparent polymers using femtosecond laser. Appl. Phys. A. 2016;122:86. doi: 10.1007/s00339-016-9605-x. DOI
Hardy L.A., Vinnichenko V., Fried N.M. High power holmium: YAG versus thulium fiber laser treatment of kidney stones in dusting mode: Ablation rate and fragment size studies. Lasers Surg. Med. 2019;51:522–530. doi: 10.1002/lsm.23057. PubMed DOI
Herrmann T.R., Gravas S., De La Rosette J.J., Wolters M., Anastasiadis A.G., Giannakis I. Lasers in Transurethral Enucleation of the Prostate-Do We Really Need Them. J. Clin. Med. 2020;9:1412. doi: 10.3390/jcm9051412. PubMed DOI PMC
Kronenberg P., Traxer O. The laser of the future: Reality and expectations about the new thulium fiber laser—A systematic review. Transl. Androl. Urol. 2019;8(Suppl. 4):S398–S417. doi: 10.21037/tau.2019.08.01. PubMed DOI PMC
Heidt A.M., Zhihong L., Richardson D.J. High power diode-seeded fiber amplifiers at 2 μm—From architectures to applications. IEEE J. Sel. Top. Quantum Electron. 2014;20:1–12. doi: 10.1109/JSTQE.2014.2312933. DOI
Swiderski J., Michalska M., Maze G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system. Opt. Express. 2013;21:7851–7857. doi: 10.1364/OE.21.007851. PubMed DOI
Gaida C., Gebhardt M., Heuermann T., Stutzki F., Jauregui C., Limpert J. Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Opt. Lett. 2018;43:5853–5856. doi: 10.1364/OL.43.005853. PubMed DOI
Ehrenreich T., Leveille R., Majid I., Tankala K., Rines G., Moulton P. 1-kW, all-glass Tm:fiber laser; Proceedings of the SPIE Photonics West 2010: LASE, Fibre Lasers VII: Technology, Systems and Applications, Conference 7580; San Francisco, CA, USA. 23–28 January 2010.
Hemming A., Simakov N., Oermann M., Carter A., Haub J. Record efficiency of a holmium-doped silica fibre laser; Proceedings of the Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM3Q.5; San Jose, CA, USA,. 5–10 June 2016; DOI
Creeden D., Johnson B.R., Setzler S.D., Chicklis E.P. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency. Opt. Lett. 2014;39:470–473. doi: 10.1364/OL.39.000470. PubMed DOI
Hanna D.C., Jauncey I.M., Percival R.M., Perry I.R., Smart R.G., Suni P.J., Townsend J.E., Tropper A.C. Continuous-wave oscillation of a monomode thulium-doped fibre laser. Electron. Lett. 1988;24:1222–1223. doi: 10.1049/el:19880831. DOI
Hanna D.C., Percival R.M., Smart R.G., Tropper A.C. Efficient and tunable operation of a Tm-doped fibre laser. Opt. Commun. 1990;75:283–286. doi: 10.1016/0030-4018(90)90533-Y. DOI
Hanna D.C., Perry I.R., Lincoln J.R., Townsend J.E. A 1-Watt thulium-doped cw fibre laser operating at 2 μm. Opt. Commun. 1990;80:52–56. doi: 10.1016/0030-4018(90)90505-N. DOI
Jackson S.D., King T.A. High-power diode-cladding-pumped Tm-doped silica fiber laser. Opt. Lett. 1998;23:1462–1464. doi: 10.1364/OL.23.001462. PubMed DOI
Hayward R.A., Clarkson W.A., Turner P.W., Nilsson J., Grudinin A.B., Hanna D.C. Efficient cladding-pumped Tm-doped silica fibre laser with high power single-mode output at 2 µm. Electron. Lett. 2000;36:711–712. doi: 10.1049/el:20000577. DOI
Frith G., Lancaster D.G., Jackson S.D. 85 W Tm3+ -doped silica fibre laser. Electron. Lett. 2005;41:687–688. doi: 10.1049/el:20051207. DOI
Meleshkevich M., Platonov N., Gapontsev D., Drozhzhin V., Sergeev V., Gapontsev V. 415W Single-Mode CW Thulium Fiber Laser in all-fiber format; Proceedings of the CLEO/Europe and IQEC 2007 Conference Digest; Munich, Germany. 17 June 2007; p. CP2_3. DOI
Goodno G.D., Book L.D., Rothenberg J.E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier. Opt. Lett. 2009;34:1204–1206. doi: 10.1364/OL.34.001204. PubMed DOI
Cajzl J., Peterka P., Kowalczyk M., Tarka J., Sobon G., Sotor J., Aubrecht J., Honzátko P., Kašík I. Thulium-doped silica fibers with enhanced fluorescence lifetime and their application in ultrafast fiber lasers. Fibers. 2018;6:66. doi: 10.3390/fib6030066. DOI
Agger S.D., Povlsen J.H. Emission and absorption cross section of thulium doped silica fibers. Opt. Express. 2006;14:50–57. doi: 10.1364/OPEX.14.000050. PubMed DOI
Peterka P., Kasik I., Matejec V., Blanc W., Faure B., Dussardier B., Monnom G., Kubecek V. Thuliumdoped silica-based optical fibers for cladding-pumped fiber amplifiers. Opt. Mater. 2007;30:174–176. doi: 10.1016/j.optmat.2006.11.039. DOI
Ramírez-Martínez N.J., Núñez-Velázquez M., Umnikov A.A., Sahu J.K. Highly efficient thulium-doped high-power laser fibers fabricated by MCVD. Opt. Express. 2019;27:196–201. doi: 10.1364/OE.27.000196. PubMed DOI
Dennis M., Cole B. Amplification Device Utilizing Thulium Doped Modified Silicate Optical Fiber. 6,924,928 B2. US Patent. 2000 Oct 2;
Hemming A., Simakov N., Haub J., Carter A. A review of recent progress in holmium-doped silica fibre sources. Opt. Fiber Technol. 2014;20:621–630. doi: 10.1016/j.yofte.2014.08.010. DOI
Kim J.W., Boyland A., Sahu J.K., Clarkson W.A. Ho-doped silica fibre laser in-band pumped by a Tm-doped fibre laser; Proceedings of the European Conference on Lasers and Electro-Optics; Munich, Germany. 14–19 June 2009; p. 1. DOI
Kim W., Bayya S., Shaw B., Myers J., Qadri S., Thapa R., Gibson D., Mcclain C., Kung F., Kolis J., et al. Hydrothermally cladded crystalline fibers for laser applications [Invited] Opt. Mater. Express. 2019;9:2716–2728. doi: 10.1364/OME.9.002716. DOI
Goldstein A., Krell A. Transparent Ceramics at 50: Progress Made and Further Prospects. J. Am. Ceram. Soc. 2016;99:3173–3197. doi: 10.1111/jace.14553. DOI
Kasik I., Peterka P., Mrazek J., Honzatko P. Silica Optical Fibers Doped with Nanoparticles for Fiber Lasers and Broadband Sources. Current Nanoscience. 2016;12:277. doi: 10.2174/1573413711666150624170638. DOI
Kamrádek M., Kašík I., Aubrecht J., Mrázek J., Podrazký O., Cajzl J., Vařák P., Kubeček V., Peterka P., Honzátko P. Nanoparticle and solution doping for efficient holmium fiber lasers. IEEE Photonics J. 2019;11:1–10. doi: 10.1109/JPHOT.2019.2940747. DOI
Jackson S.D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics. 2012;6:423–431. doi: 10.1038/nphoton.2012.149. DOI
Peterka P., Kasik I., Dhar A., Dussardier B., Blanc W. Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime. Opt. Express. 2011;19:2773–2781. doi: 10.1364/OE.19.002773. PubMed DOI
Poole S.B., Payne D., Mears R.J., Fermann M.E., Laming R. Fabrication and characterization of low-loss optical fibers containing rare-earth ions. J. Light. Technol. 1986;4:870–876. doi: 10.1109/JLT.1986.1074811. DOI
Kao K.C., Hockham G.A. Dielectric-fibre surface waveguides for optical frequencies. Proc. Inst. Electr. Eng. 1966;113:1151–1158. doi: 10.1049/piee.1966.0189. DOI
Townsend J.E., Poole S.B., Payne D.N. Solution-doping technique for fabrication of rare-earth-doped optical fibers. Electron. Lett. 1987;23:329. doi: 10.1049/el:19870244. DOI
Matějec V., Kašík I., Pospíšilová M. Preparation and optical properties of silica optical fibers with an Al2O3-doped core. J. Non-Cryst. Solids. 1995;192:195–198.
Podrazky O., Kasik I., Pospisilova M., Matejec V. Use of alumina nanoparticles for preparation of erbium-doped fibers; Proceedings of the LEOS 2007—IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings; Orlando, FL, USA. 21–25 October 2007; pp. 246–247. DOI
Kasik I., Podrazky O., Mrazek J., Cajzl J., Aubrecht A., Probostova J., Peterka P., Honzatko P., Dhar A. Erbium and Al2O3 nanocrystals-doped silica optical fibers. Bull. Pol. Acad. Sci. Tech. Sci. 2014;62:641–646. doi: 10.2478/bpasts-2014-0070. DOI
Podrazky O., Kasik I., Pospisilova M., Matejec V. Use of nanoparticles for preparation of rare-earth doped silica fibers. Phys. Status Solidi C. 2009;6:2228–2230. doi: 10.1002/pssc.200881727. DOI
Kasik I., Matejec V., Hayer M., Kamradek M., Podrazky O., Mrazek J., Peterka P., Honzatko P. Glass materials for optical fibers. Ceramics Silikaty. 2020;64:29–34. doi: 10.13168/cs.2019.0045. DOI
Koponen J., Petit L., Kokki T., Aallos V., Paul J., Ihalainen H. Progress in direct nanoparticle deposition for the development of the next generation fiber lasers. Opt. Eng. 2011;50:111605. doi: 10.1117/1.3613944. DOI
Hong C., Kim D., Choi M. Jet-Assisted Aerosol CVD for Multicomponent Particle Deposition. Chem. Vap. Depos. 2006;12:627–630. doi: 10.1002/cvde.200506402. DOI
Choudhury N., Shekhar N.K., Dhar A., Sen R. Graded-Index Ytterbium-Doped Optical Fiber Fabricated through Vapor Phase Chelate Delivery Technique. Phys. Status Solidi A. 2019;216:1900365. doi: 10.1002/pssa.201900365. DOI
Kasik I., Kamradek M., Aubrecht J., Peterka P., Podrazky O., Cajzl J., Mrazek J., Honzatko P. Thulium-doped optical fibers for fiber lasers operating at around 2 µm. Bull. Pol. Acad. Sci. 2019;67:981–986. doi: 10.24425/bpasts.2019.130883. DOI
Dhar A., Kasik I., Podrazky O., Matejec V., Dussardier B. Preparation and properties of Er-doped ZrO2 nanocrystalline phase-separated preforms of optical fibers by MCVD process. Int. J. Appl. Ceram. Technol. 2012;9:341–348. doi: 10.1111/j.1744-7402.2011.02669.x. DOI
Vařák P., Mrázek J., Blanc W., Aubrecht J., Kamrádek M., Podrazký O. Preparation and properties of Tm-doped SiO2-ZrO2 phase separated optical fibers for use in fiber lasers. Opt. Mat. Express. 2020;10:1383–1391. doi: 10.1364/OME.394068. DOI
Mrázek J., Kašík I., Procházková L., Čuba V., Girman V., Puchý V., Blanc W., Peterka P., Aubrecht J., Cajzl J., et al. YAG Ceramic Nanocrystals Implementation into MCVD Technology of Active Optical Fibers. Appl. Sci. 2018;8:833. doi: 10.3390/app8050833. DOI
Vytykacova S., Mrazek J., Puchy V., Dzunda R., Skala R., Peterka P., Kasik I. Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2 μm. Opt. Mater. 2018;78:415–420. doi: 10.1016/j.optmat.2018.02.049. DOI
Mrázek J., Kašík I., Boháček J., Proboštová J., Aubrecht J., Podrazký O., Cajzl J., Honzátko P. Special Optical Fibers Doped with Nanocrystalline Holmium-Yttrium Titanates (HoxY1-x)2Ti2O7 for Fiber-Lasers. Micro-Structured and Specialty Optical Fibres IV. Volume 9507. SPIE; Washington, DC, USA: 2015. p. 950703. DOI
Peterka P., Kasik I., Matejec V., Kubecek V., Dvoracek P. Experimental demonstration of novel end-pumping method for double-clad fiber devices. Opt. Lett. 2006;31:3240–3242. doi: 10.1364/OL.31.003240. PubMed DOI
Müller H.-R., Kirchhof J., Reichel V., Unger S. Fibers for high-power lasers and amplifiers. Comptes Rendus Phys. 2006;7:154–162. doi: 10.1016/j.crhy.2006.01.013. DOI
Sujecki S., Sojka L., Seddon A.B., Benson T.M., Barney E., Falconi M.C., Prudenzano F., Marciniak M., Baghdasaryan H., Peterka P., et al. Comparative Modeling of Infrared Fiber Lasers. Photonics. 2018;5:48. doi: 10.3390/photonics5040048. DOI
Shardlow P.C., Standish R., Sahu J., Clarkson W.A. Cladding Shaping of Optical Fibre Preforms via CO2 Laser Machining; Proceedings of the 2015 European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference; Munich, Germany. 21–25 June 2015.
Jasim A.A., Podrazký O., Peterka P., Todorov F., Honzátko P. Experimental investigation and characterization of fabrication shaped clad optical fiber by thermally polishing optical fiber preforms with CO2 laser; Proceedings of the SPIE 11029, Micro-structured and Specialty Optical Fibres VI; Bellingham, WA, USA. 16 April 2019; p. 1102909. DOI
Jasim A.A., Podrazký O., Peterka P., Kamrádek M., Kašík I., Honzátko P. Impact of shaping optical fiber preforms based on grinding and a CO2 laser on the inner-cladding losses of shaped double-clad fibers. Opt. Express. 2020;28:13601–13615. doi: 10.1364/OE.386571. PubMed DOI
Koska P., Peterka P., Doya V. Numerical modeling of pump absorption in coiled and twisted double-clad fibers. IEEE J. Sel. Top. Quantum Electron. 2016;22:4401508. doi: 10.1109/JSTQE.2015.2490100. DOI
Grábner M., Nithyanandan K., Peterka P., Koška P., Honzátko P., Jasim A.A. Numerical modelling of pump absorption in coiled and twisted double-clad fiber: A prospect for tandem pumped fiber laser; Proceedings of the Micro-Structured and Specialty Optical Fibres VI; Strasbourg, France. 6–10 April 2020; Online Only.
Koska P., Peterka P., Aubrecht J., Podrazky O., Todorov F., Becker M., Baravets Y., Honzatko P., Kasik I. Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers. Opt. Express. 2016;24:102–107. doi: 10.1364/OE.24.000102. PubMed DOI
Jasim A.A., Aubrecht J., Peterka P., Kamrádek M., Podrazký O., Todorov F., Kašík I., Honzátko P. Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform; Proceedings of the CLEO-Europe and EQEC; München, Germany. 23–27 June 2019.
Codemard C.A., Malinowski A., Zervas M.N. Numerical optimisation of pump absorption in doped double-clad fiber with transverse and longitudinal perturbation; Proceedings of the SPIE 10083, Fiber Lasers XIV: Technology and Systems; San Francisco, CA, USA. 22 February 2017; p. 1008315. DOI
Pisarik M., Peterka P., Zvanovec S., Baravets Y., Todorov F., Kasik I., Honzatko P. Fused fiber components for eye-safe spectral region around 2 μm. Opt. Quant. Electron. 2014;46:603–611. doi: 10.1007/s11082-013-9801-2. DOI
Koska P., Baravets Y., Peterka P., Bohata J., Pisarik M. Mode-field adapter for tapered-fiber-bundle signal and pump combiners. Appl. Opt. 2015;54:751–756. doi: 10.1364/AO.54.000751. PubMed DOI
Vanek M., Ctyroky J., Honzatko P. Leaky-mode resonant gratings on a fibre facet. Opt. Quant. Electron. 2018;50:50. doi: 10.1007/s11082-017-1293-z. DOI
Vanek M., Vanis J., Baravets Y., Todorov F., Ctyroky J., Honzatko P. High-power fiber laser with a polarizing diffraction grating milled on the facet of an optical fiber. Opt. Express. 2016;24:30225–30233. doi: 10.1364/OE.24.030225. PubMed DOI
Peterka P., Honzatko P., Becker M., Todorov F., Pisarik M., Podrazky O., Kasik I. Monolithic Tm-doped fiber laser at 1951 nm with deep-UV femtosecond-induced FBG pair. IEEE Photonics Technol. Lett. 2013;25:1623–1625. doi: 10.1109/LPT.2013.2272880. DOI
Theodosiou A., Aubrecht J., Peterka P., Kasik I., Todorov F., Moravec O., Honzatko P., Kalli K. Er/Yb double-clad fiber laser with fs-laser inscribed plane-by-plane chirped FBG laser mirrors. IEEE Photonics Technol. Lett. 2019;31:409–412. doi: 10.1109/LPT.2019.2896896. DOI
Rudy C.W., Digonnet M.J.F., Byer R.L. Advances in 2-μm Tm-doped mode-locked fiber lasers. Opt. Fiber Technol. 2014;20:642–649. doi: 10.1016/j.yofte.2014.06.005. DOI
Sotor J., Pawliszewska M., Sobon G., Kaczmarek P., Przewolka A., Pasternak I., Cajzl J., Peterka P., Honzatko P., Kasik I., et al. All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber. Opt. Lett. 2016;41:2592–2595. doi: 10.1364/OL.41.002592. PubMed DOI
Kanagaraj N., Theodosiou A., Aubrecht J., Peterka P., Kamradek M., Kalli K., Kasik I., Honzatko P. All fiber mode-locked thulium-doped fiber laser using a novel femtosecond-laser-inscribed 45°-plane-by-plane-tilted fiber grating. Laser Phys. Lett. 2019;16:095104. doi: 10.1088/1612-202X/ab39db. DOI
Ioannou A., Theodosiou A., Caucheteur C., Kalli K. Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser. Opt. Lett. 2017;42:5198–5201. doi: 10.1364/OL.42.005198. PubMed DOI
Honzatko P., Baravets Y., Kasik I., Podrazky O. Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600–2300 nm spectral band. Opt. Lett. 2014;39:3650–3653. doi: 10.1364/OL.39.003650. PubMed DOI
Písařík M., Peterka P., Aubrecht J., Cajzl J., Benda A., Mareš D., Todorov F., Podrazký O., Honzátko P., Kašík I. Thulium-doped fibre broadband source for spectral region near 2 micrometers. Opto-Electronics Rev. 2016;24:223–231. doi: 10.1515/oere-2016-0022. DOI
Aubrecht J., Peterka P., Honzatko P., Moravec O., Kamradek M., Kasik I. Broadband thulium-doped fiber ASE source. Opt. Lett. 2020;45:2164–2167. doi: 10.1364/OL.389397. PubMed DOI
Aubrecht J., Peterka P., Koska P., Podrazky O., Todorov F., Honzatko P., Kasik I. Self-swept holmium fiber laser near 2100 nm. Opt. Express. 2017;25:4120–4125. doi: 10.1364/OE.25.004120. PubMed DOI
Peterka P., Koška P., Čtyroký J. Reflectivity of superimposed Bragg gratings induced by longitudinal mode instabilities in fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2018;24:1–8. doi: 10.1109/JSTQE.2018.2806084. DOI