Active Optical Fibers and Components for Fiber Lasers Emitting in the 2-μm Spectral Range

. 2020 Nov 17 ; 13 (22) : . [epub] 20201117

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33212802

Grantová podpora
TN01000008 Technology Agency of the Czech Republic
GA19-03141S Czech Science Foundation

Laser sources emitting in the infrared range at around 2 µm are attracting great interest for a variety of applications like processing of transparent thermoplastic polymers in industry as well as plenty of applications in medicine, spectroscopy, gas sensing, nonlinear frequency conversion to the mid-infrared, to mention a few. Of late, fiber lasers compared to other kinds of lasers benefit from their all-fiber design, leading to a compact, robust, and well thermally manageable device. Particularly, thulium- and holmium-doped fiber lasers are the first choice in fiber lasers emitting light around 2 µm. In this paper, we give an overview of our recent results in the research on thulium- and holmium-doped optical fibers, fiber lasers, and related research topics in the 2-µm spectral range. In particular, we present, to our knowledge, the first results of improvement of pump absorption in double-clad fibers thanks to the fiber twist frozen during drawing. Finally, a brief demonstration of material processing by thulium all-fiber laser operating at 2 µm is presented.

Zobrazit více v PubMed

Hudson D.D. Invited paper: Short pulse generation in mid-IR fiber lasers. Opt. Fiber Technol. 2014;20:631–641. doi: 10.1016/j.yofte.2014.08.003. DOI

Paschotta R. RP Photonics Encyclopedia: Eye Safe Lasers. [(accessed on 11 August 2020)]; Available online: https://www.rp-photonics.com/eye_safe_lasers.html.

McComb T.S., Sims R.A., Willis C.C.C., Kadwani P., Sudesh V., Shah L., Richardson M. High-power widely tunable thulium fiber lasers. Appl. Opt. 2010;49:6236–6242. doi: 10.1364/AO.49.006236. PubMed DOI

De Young R.J., Barnes N.P. Profiling atmospheric water vapor using a fiber laser lidar system. Appl. Opt. 2010;49:562–567. doi: 10.1364/AO.49.000562. PubMed DOI

Sincore A., Bradford J.D., Cook J., Shah L., Richardson M.C. High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts. IEEE J. Sel. Top. Quantum Electron. 2018;24:1–8. doi: 10.1109/JSTQE.2017.2775964. DOI

Scholle K., Schäfer M., Lamrini S., Wysmolek M., Steinke M., Neumann J., Fuhrberg P. All-fiber linearly polarized high power 2-μm single mode Tm-fiber laser for plastic processing and Ho-laser pumping applications; Proceedings of the Fiber Lasers XV: Technology and Systems; San Francisco, CA, USA. 26 February 2018; p. 105120. DOI

Mingareev I., Weirauch F., Olowinsky A., Shah L., Kadwani P., Richardson M. Welding of polymers using a 2um thulium fiber laser. Opt. Laser Technol. 2012;44:2095–2099. doi: 10.1016/j.optlastec.2012.03.020. DOI

Roth G., Rung S., Hellmann R. Welding of transparent polymers using femtosecond laser. Appl. Phys. A. 2016;122:86. doi: 10.1007/s00339-016-9605-x. DOI

Hardy L.A., Vinnichenko V., Fried N.M. High power holmium: YAG versus thulium fiber laser treatment of kidney stones in dusting mode: Ablation rate and fragment size studies. Lasers Surg. Med. 2019;51:522–530. doi: 10.1002/lsm.23057. PubMed DOI

Herrmann T.R., Gravas S., De La Rosette J.J., Wolters M., Anastasiadis A.G., Giannakis I. Lasers in Transurethral Enucleation of the Prostate-Do We Really Need Them. J. Clin. Med. 2020;9:1412. doi: 10.3390/jcm9051412. PubMed DOI PMC

Kronenberg P., Traxer O. The laser of the future: Reality and expectations about the new thulium fiber laser—A systematic review. Transl. Androl. Urol. 2019;8(Suppl. 4):S398–S417. doi: 10.21037/tau.2019.08.01. PubMed DOI PMC

Heidt A.M., Zhihong L., Richardson D.J. High power diode-seeded fiber amplifiers at 2 μm—From architectures to applications. IEEE J. Sel. Top. Quantum Electron. 2014;20:1–12. doi: 10.1109/JSTQE.2014.2312933. DOI

Swiderski J., Michalska M., Maze G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system. Opt. Express. 2013;21:7851–7857. doi: 10.1364/OE.21.007851. PubMed DOI

Gaida C., Gebhardt M., Heuermann T., Stutzki F., Jauregui C., Limpert J. Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Opt. Lett. 2018;43:5853–5856. doi: 10.1364/OL.43.005853. PubMed DOI

Ehrenreich T., Leveille R., Majid I., Tankala K., Rines G., Moulton P. 1-kW, all-glass Tm:fiber laser; Proceedings of the SPIE Photonics West 2010: LASE, Fibre Lasers VII: Technology, Systems and Applications, Conference 7580; San Francisco, CA, USA. 23–28 January 2010.

Hemming A., Simakov N., Oermann M., Carter A., Haub J. Record efficiency of a holmium-doped silica fibre laser; Proceedings of the Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM3Q.5; San Jose, CA, USA,. 5–10 June 2016; DOI

Creeden D., Johnson B.R., Setzler S.D., Chicklis E.P. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency. Opt. Lett. 2014;39:470–473. doi: 10.1364/OL.39.000470. PubMed DOI

Hanna D.C., Jauncey I.M., Percival R.M., Perry I.R., Smart R.G., Suni P.J., Townsend J.E., Tropper A.C. Continuous-wave oscillation of a monomode thulium-doped fibre laser. Electron. Lett. 1988;24:1222–1223. doi: 10.1049/el:19880831. DOI

Hanna D.C., Percival R.M., Smart R.G., Tropper A.C. Efficient and tunable operation of a Tm-doped fibre laser. Opt. Commun. 1990;75:283–286. doi: 10.1016/0030-4018(90)90533-Y. DOI

Hanna D.C., Perry I.R., Lincoln J.R., Townsend J.E. A 1-Watt thulium-doped cw fibre laser operating at 2 μm. Opt. Commun. 1990;80:52–56. doi: 10.1016/0030-4018(90)90505-N. DOI

Jackson S.D., King T.A. High-power diode-cladding-pumped Tm-doped silica fiber laser. Opt. Lett. 1998;23:1462–1464. doi: 10.1364/OL.23.001462. PubMed DOI

Hayward R.A., Clarkson W.A., Turner P.W., Nilsson J., Grudinin A.B., Hanna D.C. Efficient cladding-pumped Tm-doped silica fibre laser with high power single-mode output at 2 µm. Electron. Lett. 2000;36:711–712. doi: 10.1049/el:20000577. DOI

Frith G., Lancaster D.G., Jackson S.D. 85 W Tm3+ -doped silica fibre laser. Electron. Lett. 2005;41:687–688. doi: 10.1049/el:20051207. DOI

Meleshkevich M., Platonov N., Gapontsev D., Drozhzhin V., Sergeev V., Gapontsev V. 415W Single-Mode CW Thulium Fiber Laser in all-fiber format; Proceedings of the CLEO/Europe and IQEC 2007 Conference Digest; Munich, Germany. 17 June 2007; p. CP2_3. DOI

Goodno G.D., Book L.D., Rothenberg J.E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier. Opt. Lett. 2009;34:1204–1206. doi: 10.1364/OL.34.001204. PubMed DOI

Cajzl J., Peterka P., Kowalczyk M., Tarka J., Sobon G., Sotor J., Aubrecht J., Honzátko P., Kašík I. Thulium-doped silica fibers with enhanced fluorescence lifetime and their application in ultrafast fiber lasers. Fibers. 2018;6:66. doi: 10.3390/fib6030066. DOI

Agger S.D., Povlsen J.H. Emission and absorption cross section of thulium doped silica fibers. Opt. Express. 2006;14:50–57. doi: 10.1364/OPEX.14.000050. PubMed DOI

Peterka P., Kasik I., Matejec V., Blanc W., Faure B., Dussardier B., Monnom G., Kubecek V. Thuliumdoped silica-based optical fibers for cladding-pumped fiber amplifiers. Opt. Mater. 2007;30:174–176. doi: 10.1016/j.optmat.2006.11.039. DOI

Ramírez-Martínez N.J., Núñez-Velázquez M., Umnikov A.A., Sahu J.K. Highly efficient thulium-doped high-power laser fibers fabricated by MCVD. Opt. Express. 2019;27:196–201. doi: 10.1364/OE.27.000196. PubMed DOI

Dennis M., Cole B. Amplification Device Utilizing Thulium Doped Modified Silicate Optical Fiber. 6,924,928 B2. US Patent. 2000 Oct 2;

Hemming A., Simakov N., Haub J., Carter A. A review of recent progress in holmium-doped silica fibre sources. Opt. Fiber Technol. 2014;20:621–630. doi: 10.1016/j.yofte.2014.08.010. DOI

Kim J.W., Boyland A., Sahu J.K., Clarkson W.A. Ho-doped silica fibre laser in-band pumped by a Tm-doped fibre laser; Proceedings of the European Conference on Lasers and Electro-Optics; Munich, Germany. 14–19 June 2009; p. 1. DOI

Kim W., Bayya S., Shaw B., Myers J., Qadri S., Thapa R., Gibson D., Mcclain C., Kung F., Kolis J., et al. Hydrothermally cladded crystalline fibers for laser applications [Invited] Opt. Mater. Express. 2019;9:2716–2728. doi: 10.1364/OME.9.002716. DOI

Goldstein A., Krell A. Transparent Ceramics at 50: Progress Made and Further Prospects. J. Am. Ceram. Soc. 2016;99:3173–3197. doi: 10.1111/jace.14553. DOI

Kasik I., Peterka P., Mrazek J., Honzatko P. Silica Optical Fibers Doped with Nanoparticles for Fiber Lasers and Broadband Sources. Current Nanoscience. 2016;12:277. doi: 10.2174/1573413711666150624170638. DOI

Kamrádek M., Kašík I., Aubrecht J., Mrázek J., Podrazký O., Cajzl J., Vařák P., Kubeček V., Peterka P., Honzátko P. Nanoparticle and solution doping for efficient holmium fiber lasers. IEEE Photonics J. 2019;11:1–10. doi: 10.1109/JPHOT.2019.2940747. DOI

Jackson S.D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics. 2012;6:423–431. doi: 10.1038/nphoton.2012.149. DOI

Peterka P., Kasik I., Dhar A., Dussardier B., Blanc W. Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime. Opt. Express. 2011;19:2773–2781. doi: 10.1364/OE.19.002773. PubMed DOI

Poole S.B., Payne D., Mears R.J., Fermann M.E., Laming R. Fabrication and characterization of low-loss optical fibers containing rare-earth ions. J. Light. Technol. 1986;4:870–876. doi: 10.1109/JLT.1986.1074811. DOI

Kao K.C., Hockham G.A. Dielectric-fibre surface waveguides for optical frequencies. Proc. Inst. Electr. Eng. 1966;113:1151–1158. doi: 10.1049/piee.1966.0189. DOI

Townsend J.E., Poole S.B., Payne D.N. Solution-doping technique for fabrication of rare-earth-doped optical fibers. Electron. Lett. 1987;23:329. doi: 10.1049/el:19870244. DOI

Matějec V., Kašík I., Pospíšilová M. Preparation and optical properties of silica optical fibers with an Al2O3-doped core. J. Non-Cryst. Solids. 1995;192:195–198.

Podrazky O., Kasik I., Pospisilova M., Matejec V. Use of alumina nanoparticles for preparation of erbium-doped fibers; Proceedings of the LEOS 2007—IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings; Orlando, FL, USA. 21–25 October 2007; pp. 246–247. DOI

Kasik I., Podrazky O., Mrazek J., Cajzl J., Aubrecht A., Probostova J., Peterka P., Honzatko P., Dhar A. Erbium and Al2O3 nanocrystals-doped silica optical fibers. Bull. Pol. Acad. Sci. Tech. Sci. 2014;62:641–646. doi: 10.2478/bpasts-2014-0070. DOI

Podrazky O., Kasik I., Pospisilova M., Matejec V. Use of nanoparticles for preparation of rare-earth doped silica fibers. Phys. Status Solidi C. 2009;6:2228–2230. doi: 10.1002/pssc.200881727. DOI

Kasik I., Matejec V., Hayer M., Kamradek M., Podrazky O., Mrazek J., Peterka P., Honzatko P. Glass materials for optical fibers. Ceramics Silikaty. 2020;64:29–34. doi: 10.13168/cs.2019.0045. DOI

Koponen J., Petit L., Kokki T., Aallos V., Paul J., Ihalainen H. Progress in direct nanoparticle deposition for the development of the next generation fiber lasers. Opt. Eng. 2011;50:111605. doi: 10.1117/1.3613944. DOI

Hong C., Kim D., Choi M. Jet-Assisted Aerosol CVD for Multicomponent Particle Deposition. Chem. Vap. Depos. 2006;12:627–630. doi: 10.1002/cvde.200506402. DOI

Choudhury N., Shekhar N.K., Dhar A., Sen R. Graded-Index Ytterbium-Doped Optical Fiber Fabricated through Vapor Phase Chelate Delivery Technique. Phys. Status Solidi A. 2019;216:1900365. doi: 10.1002/pssa.201900365. DOI

Kasik I., Kamradek M., Aubrecht J., Peterka P., Podrazky O., Cajzl J., Mrazek J., Honzatko P. Thulium-doped optical fibers for fiber lasers operating at around 2 µm. Bull. Pol. Acad. Sci. 2019;67:981–986. doi: 10.24425/bpasts.2019.130883. DOI

Dhar A., Kasik I., Podrazky O., Matejec V., Dussardier B. Preparation and properties of Er-doped ZrO2 nanocrystalline phase-separated preforms of optical fibers by MCVD process. Int. J. Appl. Ceram. Technol. 2012;9:341–348. doi: 10.1111/j.1744-7402.2011.02669.x. DOI

Vařák P., Mrázek J., Blanc W., Aubrecht J., Kamrádek M., Podrazký O. Preparation and properties of Tm-doped SiO2-ZrO2 phase separated optical fibers for use in fiber lasers. Opt. Mat. Express. 2020;10:1383–1391. doi: 10.1364/OME.394068. DOI

Mrázek J., Kašík I., Procházková L., Čuba V., Girman V., Puchý V., Blanc W., Peterka P., Aubrecht J., Cajzl J., et al. YAG Ceramic Nanocrystals Implementation into MCVD Technology of Active Optical Fibers. Appl. Sci. 2018;8:833. doi: 10.3390/app8050833. DOI

Vytykacova S., Mrazek J., Puchy V., Dzunda R., Skala R., Peterka P., Kasik I. Sol-gel route to highly transparent (Ho0.05Y0.95)2Ti2O7 thin films for active optical components operating at 2 μm. Opt. Mater. 2018;78:415–420. doi: 10.1016/j.optmat.2018.02.049. DOI

Mrázek J., Kašík I., Boháček J., Proboštová J., Aubrecht J., Podrazký O., Cajzl J., Honzátko P. Special Optical Fibers Doped with Nanocrystalline Holmium-Yttrium Titanates (HoxY1-x)2Ti2O7 for Fiber-Lasers. Micro-Structured and Specialty Optical Fibres IV. Volume 9507. SPIE; Washington, DC, USA: 2015. p. 950703. DOI

Peterka P., Kasik I., Matejec V., Kubecek V., Dvoracek P. Experimental demonstration of novel end-pumping method for double-clad fiber devices. Opt. Lett. 2006;31:3240–3242. doi: 10.1364/OL.31.003240. PubMed DOI

Müller H.-R., Kirchhof J., Reichel V., Unger S. Fibers for high-power lasers and amplifiers. Comptes Rendus Phys. 2006;7:154–162. doi: 10.1016/j.crhy.2006.01.013. DOI

Sujecki S., Sojka L., Seddon A.B., Benson T.M., Barney E., Falconi M.C., Prudenzano F., Marciniak M., Baghdasaryan H., Peterka P., et al. Comparative Modeling of Infrared Fiber Lasers. Photonics. 2018;5:48. doi: 10.3390/photonics5040048. DOI

Shardlow P.C., Standish R., Sahu J., Clarkson W.A. Cladding Shaping of Optical Fibre Preforms via CO2 Laser Machining; Proceedings of the 2015 European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference; Munich, Germany. 21–25 June 2015.

Jasim A.A., Podrazký O., Peterka P., Todorov F., Honzátko P. Experimental investigation and characterization of fabrication shaped clad optical fiber by thermally polishing optical fiber preforms with CO2 laser; Proceedings of the SPIE 11029, Micro-structured and Specialty Optical Fibres VI; Bellingham, WA, USA. 16 April 2019; p. 1102909. DOI

Jasim A.A., Podrazký O., Peterka P., Kamrádek M., Kašík I., Honzátko P. Impact of shaping optical fiber preforms based on grinding and a CO2 laser on the inner-cladding losses of shaped double-clad fibers. Opt. Express. 2020;28:13601–13615. doi: 10.1364/OE.386571. PubMed DOI

Koska P., Peterka P., Doya V. Numerical modeling of pump absorption in coiled and twisted double-clad fibers. IEEE J. Sel. Top. Quantum Electron. 2016;22:4401508. doi: 10.1109/JSTQE.2015.2490100. DOI

Grábner M., Nithyanandan K., Peterka P., Koška P., Honzátko P., Jasim A.A. Numerical modelling of pump absorption in coiled and twisted double-clad fiber: A prospect for tandem pumped fiber laser; Proceedings of the Micro-Structured and Specialty Optical Fibres VI; Strasbourg, France. 6–10 April 2020; Online Only.

Koska P., Peterka P., Aubrecht J., Podrazky O., Todorov F., Becker M., Baravets Y., Honzatko P., Kasik I. Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers. Opt. Express. 2016;24:102–107. doi: 10.1364/OE.24.000102. PubMed DOI

Jasim A.A., Aubrecht J., Peterka P., Kamrádek M., Podrazký O., Todorov F., Kašík I., Honzátko P. Efficient Pump Absorption in Twisted Double Clad Thulium-Doped Fibers Drawn of CO2 Laser Shaped Preform; Proceedings of the CLEO-Europe and EQEC; München, Germany. 23–27 June 2019.

Codemard C.A., Malinowski A., Zervas M.N. Numerical optimisation of pump absorption in doped double-clad fiber with transverse and longitudinal perturbation; Proceedings of the SPIE 10083, Fiber Lasers XIV: Technology and Systems; San Francisco, CA, USA. 22 February 2017; p. 1008315. DOI

Pisarik M., Peterka P., Zvanovec S., Baravets Y., Todorov F., Kasik I., Honzatko P. Fused fiber components for eye-safe spectral region around 2 μm. Opt. Quant. Electron. 2014;46:603–611. doi: 10.1007/s11082-013-9801-2. DOI

Koska P., Baravets Y., Peterka P., Bohata J., Pisarik M. Mode-field adapter for tapered-fiber-bundle signal and pump combiners. Appl. Opt. 2015;54:751–756. doi: 10.1364/AO.54.000751. PubMed DOI

Vanek M., Ctyroky J., Honzatko P. Leaky-mode resonant gratings on a fibre facet. Opt. Quant. Electron. 2018;50:50. doi: 10.1007/s11082-017-1293-z. DOI

Vanek M., Vanis J., Baravets Y., Todorov F., Ctyroky J., Honzatko P. High-power fiber laser with a polarizing diffraction grating milled on the facet of an optical fiber. Opt. Express. 2016;24:30225–30233. doi: 10.1364/OE.24.030225. PubMed DOI

Peterka P., Honzatko P., Becker M., Todorov F., Pisarik M., Podrazky O., Kasik I. Monolithic Tm-doped fiber laser at 1951 nm with deep-UV femtosecond-induced FBG pair. IEEE Photonics Technol. Lett. 2013;25:1623–1625. doi: 10.1109/LPT.2013.2272880. DOI

Theodosiou A., Aubrecht J., Peterka P., Kasik I., Todorov F., Moravec O., Honzatko P., Kalli K. Er/Yb double-clad fiber laser with fs-laser inscribed plane-by-plane chirped FBG laser mirrors. IEEE Photonics Technol. Lett. 2019;31:409–412. doi: 10.1109/LPT.2019.2896896. DOI

Rudy C.W., Digonnet M.J.F., Byer R.L. Advances in 2-μm Tm-doped mode-locked fiber lasers. Opt. Fiber Technol. 2014;20:642–649. doi: 10.1016/j.yofte.2014.06.005. DOI

Sotor J., Pawliszewska M., Sobon G., Kaczmarek P., Przewolka A., Pasternak I., Cajzl J., Peterka P., Honzatko P., Kasik I., et al. All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber. Opt. Lett. 2016;41:2592–2595. doi: 10.1364/OL.41.002592. PubMed DOI

Kanagaraj N., Theodosiou A., Aubrecht J., Peterka P., Kamradek M., Kalli K., Kasik I., Honzatko P. All fiber mode-locked thulium-doped fiber laser using a novel femtosecond-laser-inscribed 45°-plane-by-plane-tilted fiber grating. Laser Phys. Lett. 2019;16:095104. doi: 10.1088/1612-202X/ab39db. DOI

Ioannou A., Theodosiou A., Caucheteur C., Kalli K. Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser. Opt. Lett. 2017;42:5198–5201. doi: 10.1364/OL.42.005198. PubMed DOI

Honzatko P., Baravets Y., Kasik I., Podrazky O. Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600–2300 nm spectral band. Opt. Lett. 2014;39:3650–3653. doi: 10.1364/OL.39.003650. PubMed DOI

Písařík M., Peterka P., Aubrecht J., Cajzl J., Benda A., Mareš D., Todorov F., Podrazký O., Honzátko P., Kašík I. Thulium-doped fibre broadband source for spectral region near 2 micrometers. Opto-Electronics Rev. 2016;24:223–231. doi: 10.1515/oere-2016-0022. DOI

Aubrecht J., Peterka P., Honzatko P., Moravec O., Kamradek M., Kasik I. Broadband thulium-doped fiber ASE source. Opt. Lett. 2020;45:2164–2167. doi: 10.1364/OL.389397. PubMed DOI

Aubrecht J., Peterka P., Koska P., Podrazky O., Todorov F., Honzatko P., Kasik I. Self-swept holmium fiber laser near 2100 nm. Opt. Express. 2017;25:4120–4125. doi: 10.1364/OE.25.004120. PubMed DOI

Peterka P., Koška P., Čtyroký J. Reflectivity of superimposed Bragg gratings induced by longitudinal mode instabilities in fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2018;24:1–8. doi: 10.1109/JSTQE.2018.2806084. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...