Buccal Resveratrol Delivery System as a Potential New Concept for the Periodontitis Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
778051
European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant
n/d
Poznan University of Medical Sciences, under ProScience-Young Scientists grant
PubMed
33804630
PubMed Central
PMC8003728
DOI
10.3390/pharmaceutics13030417
PII: pharmaceutics13030417
Knihovny.cz E-zdroje
- Klíčová slova
- buccal tablets, cyclodextrins, mucoadhesion, resveratrol,
- Publikační typ
- časopisecké články MeSH
The health benefits of resveratrol have been proven to inhibit the development of numerous diseases. A frequent limitation in its use is a low bioavailability stemming from a poor solubility and fast enterohepatic metabolism. Thus, the aim of the research was to investigate the possibility to formulate mucoadhesive cyclodextrin- and xanthan gum-based buccal tablets in order to increase the solubility of resveratrol and to eliminate bypass enterohepatic metabolism. Systems of resveratrol with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) prepared by the dry mixing method (ratio 1:1) were selected for the of tablets where xanthan gum was used as a mucoadhesive agent. They were identified on the basis of PXRD, FT-IR analysis. Tablets F1 (with α-CD), F2 (with β-CD) and F3 (with γ-CD) were characterized by the highest compactibility as well as by favorable mucoadhesive properties. Resveratrol release from these tablets was delayed and controlled by diffusion. The tablets prepared in the course of this study appear to constitute promising resveratrol delivery systems and are recommended to increase the effectiveness of the treatment in many diseases, particularly periodontitis.
Zobrazit více v PubMed
Pihlstrom B.L., Michalowicz B.S., Johnson N.W. Periodontal diseases. Lancet. 2005;366:1809–1820. doi: 10.1016/S0140-6736(05)67728-8. PubMed DOI
Popova C., Dosseva-Panova V., Panov V. Microbiology of Periodontal Diseases. A Review. Biotechnol. Biotechnol. Equip. 2013;27:3754–3759. doi: 10.5504/BBEQ.2013.0027. DOI
Eid Abdelmagyd H.A., Ram Shetty D.S., Musa Musleh Al-Ahmari D.M. Herbal medicine as adjunct in periodontal therapies—A review of clinical trials in past decade. J. Oral. Biol. Craniofac. Res. 2019;9:212–217. doi: 10.1016/j.jobcr.2019.05.001. PubMed DOI PMC
Kala R., Tollefsbol O.T., Li Y. Potential of Resveratrol in Inhibiting Cancer and Slowing Aging. J. Nutr. Food Sci. 2012;5:5. doi: 10.4172/2155-9600.S5-001. DOI
Khazaei S., Khazaei M., Kazemi S., Yaghini J. Resveratrol as a supplemental treatment for periodontitis. Dent. Res. J. 2012;9:655–657. doi: 10.4103/1735-3327.104891. PubMed DOI PMC
Li J., Wu T., Peng W., Zhu Y. Effects of resveratrol on cariogenic virulence properties of Streptococcus mutans. BMC Microbiol. 2020;20:1–11. doi: 10.1186/s12866-020-01761-3. PubMed DOI PMC
Andrade E.F., Orlando D.R., Araújo A.M.S., De Andrade J.N.B.M., Azzi D.V., De Lima R.R., Lobo-Júnior A.R., Pereira L.J. Can Resveratrol Treatment Control the Progression of Induced Periodontal Disease? A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients. 2019;11:953. doi: 10.3390/nu11050953. PubMed DOI PMC
Bonechi C., Lamponi S., Donati A., Tamasi G., Consumi M., Leone G., Rossi C., Magnani A. Effect of resveratrol on platelet aggregation by fibrinogen protection. Biophys. Chem. 2017;222:41–48. doi: 10.1016/j.bpc.2016.12.004. PubMed DOI
Lu R., Serrero G. Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. J. Cell. Physiol. 1999;179:297–304. doi: 10.1002/(SICI)1097-4652(199906)179:3<297::AID-JCP7>3.0.CO;2-P. PubMed DOI
Mgbonyebi O.P., Russo J., Russo I.H. Antiproliferative effect of synthetic resveratrol on human breast epithelial cells. Int. J. Oncol. 1998;12:865–869. doi: 10.3892/ijo.12.4.865. PubMed DOI
Gomes B.A.Q., Silva J.P.B., Romeiro C.F.R., Dos Santos S.M., Rodrigues C.A., Gonçalves P.R., Sakai J.T., Mendes P.F.S., Varela E.L.P., Monteiro M.C. Neuroprotective Mechanisms of Resveratrol in Alzheimer’s Disease: Role of SIRT1. Oxidative Med. Cell. Longev. 2018;2018:1–15. doi: 10.1155/2018/8152373. PubMed DOI PMC
Oyenihi O.R., Oyenihi A.B., Adeyanju A.A., Oguntibeju O.O. Antidiabetic Effects of Resveratrol: The Way Forward in Its Clinical Utility. J. Diabetes Res. 2016;2016:1–14. doi: 10.1155/2016/9737483. PubMed DOI PMC
Stivala L.A., Savio M., Carafoli F., Perucca P., Bianchi L., Maga G., Forti L., Pagnoni U.M., Albini A., Prosperi E., et al. Specific Structural Determinants Are Responsible for the Antioxidant Activity and the Cell Cycle Effects of Resveratrol. J. Biol. Chem. 2001;276:22586–22594. doi: 10.1074/jbc.M101846200. PubMed DOI
Spogli R., Bastianini M., Ragonese F., Iannitti R.G., Monarca L., Bastioli F., Nakashidze I., Brecchia G., Menchetti L., Codini M., et al. Solid Dispersion of Resveratrol Supported on Magnesium DiHydroxide (Resv@MDH) Microparticles Improves Oral Bioavailability. Nutrients. 2018;10:1925. doi: 10.3390/nu10121925. PubMed DOI PMC
Smoliga J.M., Blanchard O. Enhancing the Delivery of Resveratrol in Humans: If Low Bioavailability is the Problem, What is the Solution? Molecules. 2014;19:17154–17172. doi: 10.3390/molecules191117154. PubMed DOI PMC
Walle T., Hsieh F., DeLegge M., Oatis J., Jr., Walle K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI
Walle T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 2011;1215:9–15. doi: 10.1111/j.1749-6632.2010.05842.x. PubMed DOI
Chimento A., De Amicis F., Sirianni R., Sinicropi M.S., Puoci F., Casaburi I., Saturnino C., Pezzi V. Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int. J. Mol. Sci. 2019;20:1381. doi: 10.3390/ijms20061381. PubMed DOI PMC
Wenzel E., Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res. 2005;49:472–481. doi: 10.1002/mnfr.200500010. PubMed DOI
Almeida L., Vaz-Da-Silva M., Falcão A., Soares E., Costa R., Loureiro A.I., Fernandes-Lopes C., Rocha J.-F., Nunes T., Wright L., et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food Res. 2009;53:S7–S15. doi: 10.1002/mnfr.200800177. PubMed DOI
Loftsson T., Brewster M.E. Cyclodextrins as Functional Excipients: Methods to Enhance Complexation Efficiency. J. Pharm. Sci. 2012;101:3019–3032. doi: 10.1002/jps.23077. PubMed DOI
Conceição J., Adeoye O., Cabral-Marques H.M., Lobo J.M.S. Cyclodextrins as excipients in tablet formulations. Drug Discov. Today. 2018;23:1274–1284. doi: 10.1016/j.drudis.2018.04.009. PubMed DOI
Amri A., Chaumeil J., Sfar S., Charrueau C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J. Control. Release. 2012;158:182–193. doi: 10.1016/j.jconrel.2011.09.083. PubMed DOI
Conceição J., Adeoye O., Cabral-Marques H.M., Lobo J.M.S. Hydroxypropyl-β-Cyclodextrin and β-Cyclodextrin as Tablet Fillers for Direct Compression. AAPS PharmSciTech. 2018;19:2710–2718. doi: 10.1208/s12249-018-1115-z. PubMed DOI
De Vries K., Strydom M., Steenkamp V. Bioavailability of resveratrol: Possibilities for enhancement. J. Herb. Med. 2018;11:71–77. doi: 10.1016/j.hermed.2017.09.002. DOI
Zhang H., Zhang J., Streisand J.B. Oral mucosal drug delivery: Clinical pharmacokinetics and therapeutic applications. Clin. Pharmacokinet. 2002;41:661–680. doi: 10.2165/00003088-200241090-00003. PubMed DOI
Blanchard O.L., Friesenhahn G., Javors M.A., Smoliga J.M. Development of a Lozenge for Oral Transmucosal Delivery of Trans-Resveratrol in Humans: Proof of Concept. PLoS ONE. 2014;9:e90131. doi: 10.1371/journal.pone.0090131. PubMed DOI PMC
Vaz-Da-Silva M., Loureiro A., Falcao A., Nunes T., Rocha J.-F., Fernandes-Lopes C., Soares E., Wright L., Almeida L., Soares-Da-Silva P. Effect of food on the pharmacokinetic profile of trans-resveratrol. Int. J. Clin. Pharmacol. Ther. 2008;46:564–570. doi: 10.5414/CPP46564. PubMed DOI
Lopez-Nicolas J.M., Garcia-Carmona F. Aggregation state and pKa values of (E)-resveratrol as determined by fluorescence spectroscopy and UV-visible absorption. J. Agric. Food Chem. 2008;56:7600–7605. doi: 10.1021/jf800843e. PubMed DOI
Ansari M., Sadarani B., Majumdar A. Optimization and evaluation of mucoadhesive buccal films loaded with resveratrol. J. Drug Deliv. Sci. Technol. 2018;44:278–288. doi: 10.1016/j.jddst.2017.12.007. DOI
Martins I.C.F., Raposo N.R.B., Mockdeci H.R., Polonini H.C., Ferreira A.D.O., Fabri G.M.C., Chaves M.D.G.A.M. Delivering Resveratrol on the Buccal Mucosa Using Mucoadhesive Tablets: A Potential Treatment Strategy for Inflammatory Oral Lesions. Curr. Drug Deliv. 2018;15:254–259. doi: 10.2174/1567201814666170726102558. PubMed DOI
Bojanowski K., Bojanowski R. Two methods of oral delivery of resveratrol: A case study. J. Aging Res. Clin. Pract. 2015;4:185–189.
Paczkowska M., McDonagh A.F., Bialek K., Tajber L., Cielecka-Piontek J. Mechanochemical activation with cyclodextrins followed by compaction as an effective approach to improving dissolution of rutin. Int. J. Pharm. 2020;581:119294. doi: 10.1016/j.ijpharm.2020.119294. PubMed DOI
Moore J.W., Flanner H.H. Mathematical Comparison of curves with an emphasis on in vitro dissolution profiles. Pharm. Tech. 1996;20:64–74.
Chen K. The PAMPA Work Flow and Comparison of UV-Plate Reader Method vs. LC/MS Method. [(accessed on 4 March 2021)]; Available online: https://vdocuments.net/the-pampa-work-flow-and-comparison-of-uv-plate-permeability-formula-has-taken.html.
Yee S. In Vitro Permeability Across Caco-2 Cells (Colonic) Can Predict In Vivo (Small Intestinal) Absorption in Man—Fact or Myth. Pharm. Res. 1997;14:763–766. doi: 10.1023/A:1012102522787. PubMed DOI
Kikowska M.A., Chmielewska M., Włodarczyk A., Studzińska-Sroka E., Żuchowski J., Stochmal A., Kotwicka M., Thiem B. Effect of Pentacyclic Triterpenoids-Rich Callus Extract of Chaenomeles japonica (Thunb.) Lindl. ex Spach on Viability, Morphology, and Proliferation of Normal Human Skin Fibroblasts. Molecules. 2018;23:3009. doi: 10.3390/molecules23113009. PubMed DOI PMC
Apak R., Güçlü K., Özyürek M., Çelik S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. ACTA. 2007;160:413–419. doi: 10.1007/s00604-007-0777-0. DOI
European Pharmacopoeia. 10th ed. Council of Europe Portal; Strasbourg, France: 2020. Uniformity of dosage units; pp. 398–400. Chapter 2.9.40.
Tye C.K., Sun C., Amidon G.E. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J. Pharm. Sci. 2005;94:465–472. doi: 10.1002/jps.20262. PubMed DOI
Costa P., Lobo J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001;13:123–133. doi: 10.1016/S0928-0987(01)00095-1. PubMed DOI
Hassan E.E., Gallo J.M. A Simple Rheological Method for the in Vitro Assessment of Mucin-Polymer Bioadhesive Bond Strength. Pharm. Res. 1990;7:491–495. doi: 10.1023/A:1015812615635. PubMed DOI
Marques M.R.C., Loebenberg R., Almukainzi M. Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technol. 2011;18:15–28. doi: 10.14227/DT180311P15. DOI
Nakamura F., Ohta R., Machida Y., Nagai T. In vitro and in vivo nasal mucoadhesion of some water-soluble polymers. Int. J. Pharm. 1996;134:173–181. doi: 10.1016/0378-5173(95)04416-7. DOI
Huang X., Dai Y., Cai J., Zhong N., Xiao H., McClements D.J., Hu K. Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocoll. 2017;64:157–165. doi: 10.1016/j.foodhyd.2016.10.029. DOI
Zhou R., Wang F., Guo Z., Zhao Y.L. Preparation and characterization of resveratrol/hydroxypropyl-beta-cyclodextrin inclusion complex using supercritical antisolvent technology. J. Food Process. Eng. 2012;35:1–10. doi: 10.1111/j.1745-4530.2010.00617.x. DOI
Kumpugdee-Vollrath M., Ibold Y., Sriamornsak P. Solid state characterization of trans resveratrol complexes with different cyclodextrins. JAASP. 2012;1:125–136.
Silva A.F.R., Monteiro M., Resende D., Braga S.S., Coimbra M.A., Silva A.M.S., Cardoso S.M. Inclusion Complex of Resveratrol with γ-Cyclodextrin as a Functional Ingredient for Lemon Juices. Foods. 2020;10:16. doi: 10.3390/foods10010016. PubMed DOI PMC
Dhakar N.K., Matencio A., Caldera F., Argenziano M., Cavalli R., Dianzani C., Zanetti M., López-Nicolás J.M., Trotta F. Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics. 2019;11:545. doi: 10.3390/pharmaceutics11100545. PubMed DOI PMC
Bertacche V., Lorenzi N., Nava D., Pini E., Sinico C. Host–Guest Interaction Study of Resveratrol with Natural and Modified Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2006;55:279–287. doi: 10.1007/s10847-006-9047-8. DOI
Lu Z., Cheng B., Hu Y., Zhang Y., Zou G. Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chem. 2009;113:17–20. doi: 10.1016/j.foodchem.2008.04.042. DOI
Ansari K.A., Vavia P.R., Trotta F., Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro charac-terisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech. 2011;12:279–286. doi: 10.1208/s12249-011-9584-3. PubMed DOI PMC
Cooper G.M. The Cell: A Molecular Approach. 2nd ed. Sinauer Associates; Sunderland, MA, USA: 2000. Transport of Small Molecules.
Aree T., Jongrungruangchok S. Structure–antioxidant activity relationship of β-cyclodextrin inclusion complexes with olive tyrosol, hydroxytyrosol and oleuropein: Deep insights from X-ray analysis, DFT calculation and DPPH assay. Carbohydr. Polym. 2018;199:661–669. doi: 10.1016/j.carbpol.2018.07.019. PubMed DOI
Folch-Cano C., Jullian C., Speisky H., Olea-Azar C. Antioxidant activity of inclusion complexes of tea catechins with β-cyclodextrins by ORAC assays. Food Res. Int. 2010;43:2039–2044. doi: 10.1016/j.foodres.2010.06.006. DOI
Wang H., Wang S., Zhu H., Wang S., Xing J. Inclusion Complexes of Lycopene and β-Cyclodextrin: Preparation, Characterization, Stability and Antioxidant Activity. Antioxidants. 2019;8:314. doi: 10.3390/antiox8080314. PubMed DOI PMC
López-Nicolás J.M., Rodríguez-Bonilla P., García-Carmona F. Cyclodextrins and Antioxidants. Crit. Rev. Food Sci. Nutr. 2013;54:251–276. doi: 10.1080/10408398.2011.582544. PubMed DOI
EMA Cyclodextrins used as excipients. [(accessed on 19 March 2021)];Eur. Med. Agency. 2017 23:1–16. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/questions-answers-cyclodextrins-used-excipients-medicinal-products-human-use_en.pdf.
Sun C., Grant D.J.W. Influence of Crystal Structure on the Tableting Properties of Sulfamerazine Polymorphs. Pharm. Res. 2001;18:274–280. doi: 10.1023/A:1011038526805. PubMed DOI
Salústio P.J., Pontes P., Conduto C., Sanches I., Carvalho C., Arrais J., Marques H.M.C. Advanced Technologies for Oral Controlled Release: Cyclodextrins for Oral Controlled Release. AAPS PharmSciTech. 2011;12:1276–1292. doi: 10.1208/s12249-011-9690-2. PubMed DOI PMC
Ali A., Iqbal M., Akhtar N., Khan H.M.S., Ullah A., Uddin M., Khan M.T. Assessment of xanthan gum based sustained release matrix tablets containing highly water-soluble propranolol HCl. ACTA Pol. Pharm. Drug Res. 2013;70:283–289. PubMed
Gavini E., Rassu G., Haukvik T., Lanni C., Racchi M., Giunchedi P. Mucoadhesive microspheres for nasal administration of cyclodextrins. J. Drug Target. 2009;17:168–179. doi: 10.1080/10611860802556842. PubMed DOI
Wei B., Romero-Zerón L., Rodrigue D. Improved viscoelasticity of xanthan gum through self-association with surfactant: β-cyclodextrin inclusion complexes for applications in enhanced oil recovery. Polym. Eng. Sci. 2014 doi: 10.1002/pen.23912. DOI